Рефетека.ру / Коммуникации и связь

Дипломная работа: Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Содержание


1. Постановка задачи

2. Структурный принцип собственной компенсации влияния проходных емкостей

3. Практическое применение принципа собственной компенсации

4. Взаимная компенсация емкостей подложки и нагрузки

5. Структурная оптимизация дифференциальных каскадов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентовБиблиографический список

1. Постановка задачи


Создание систем на кристалле связано с решением целого комплекса научных и технических задач. Единство аналоговых и цифровых модулей этих систем предопределяет разработку экономичных аналоговых и аналого-цифровых принципиальных схем достаточно сложных функциональных блоков. Без решения этой центральной, по мнению автора, проблемы потребляемая мощность аналоговых интерфейсов систем на кристалле значительно превысит этот показатель для центральных процессорных элементов. Именно поэтому многообразие архитектурных решений может оказаться невостребованным.

В [6] на уровне сложных функциональных блоков предложен эффективный способ собственной компенсации влияния частоты единичного усиления (f1) усилителей на базовые характеристики и параметры различных аналоговых устройств. Этот результат позволяет использовать экономичные операционные усилители (ОУ). Однако, как показано в [5], влияние скорости нарастания выходного напряжения ОУ на динамический диапазон устройств не уменьшается, а теоретическая неосуществимость полной собственной компенсации влияния Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов указывает на необходимость поиска принципов построения экономичных усилителей с расширенным диапазоном рабочих частот и более высокой скоростью нарастания выходного напряжения.

Для повышения интегральных качественных показателей основное усиление реализуется во входных каскадах. Именно поэтому скорость нарастания выходного напряжения любой схемы (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) определяется следующим соотношением [3]:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (1)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – частота единичного усиления по петле обратной связи аналогового устройства и напряжение ограничения входного каскада.

Для увеличения Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и, следовательно, скорости нарастания без изменения Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов во входных каскадах применяют либо полевые транзисторы, либо используют специальные цепи нелинейной коррекции [8]. Однако предельно допустимое для заданной технологии значение скорости нарастания в любом случае определяется граничной частотой каскада максимального усиления. Сложность структуры усилителей приводит к появлению недоминирующих полюсов, что требует для обеспечения устойчивости работы схем с обратной связью применения дополнительных корректирующих конденсаторов (Скорр), поэтому


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (2)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – потребляемый входным каскадом ток.

Увеличение Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов позволяет уменьшить необходимое значение Скорр и, следовательно, не только повысить скорость нарастания входного напряжения, но и расширить диапазон рабочих частот.

Из теории усилительных каскадов известно, что при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов>>1


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (3)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов– коэффициент усиления i-го каскада.

При использовании полевых транзисторов


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (4)


где S, Cout, Cк – крутизна, выходная и проходная емкости полевого транзистора.

Для биполярных транзисторов


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (5)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – сопротивление эмиттерного перехода; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – сопротивление области базы, статический коэффициент передачи эмиттерного тока и емкость коллекторного перехода; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – граничная частота передачи эмиттерного тока; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – общее сопротивление нагрузки.

На любом этапе развития технологии производства микросхем основным (доминирующим) фактором является влияние Ск. Таким образом, увеличение диапазона рабочих частот усилителей связано с созданием высокочастотных биполярных и(или) полевых транзисторов. В первую очередь для этого и ужесточаются технологические нормы их производства. Однако для обеспечения высококачественных малосигнальных параметров, входящих в соотношения (4) и (5), транзисторы должны в любом случае потреблять относительно большую мощность (Iopt, Uopt).


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 1. Зависимость малосигнальных параметров транзисторов от потребляемого тока

Как видно из рис. 1, стремление уменьшить потребляемый в рабочей точке ток приводит к заметному и непропорциональному увеличению Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и, следовательно, к уменьшению f1 и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. Несложно показать, что уменьшение потребляемого тока увеличивает также вклад данного транзистора в собственный шум схемы. Аналогичный вывод характерен и для рабочего напряжения транзистора. Таким образом, по аналогии с [6] необходимо вскрыть топологические принципы компенсации влияния емкости коллекторного перехода и(или) проходной емкости полевого транзистора на диапазон рабочих частот усилителей.


2. Структурный принцип собственной компенсации влияния проходных емкостей


Для получения фундаментальных соотношений и качественных выводов в соответствии с методикой [6] рассмотрим основные свойства обобщенной структуры (рис. 2), которая поглощает любые электронные устройства, построенные на полевых и(или) биполярных транзисторах.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 2. Обобщенная структура электронных усилителей


Эта структура характеризуется следующей векторной системой уравнений


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (6)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов


Смысл векторов Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и матриц Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, их структура поясняется табл. 1.


Таблица 1

Физический смысл КЧС

Матрица,

вектор

Размерность

Физический смысл компонент

(передача КЧС)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Передача с выхода i-го каскада (i-й транзистор) к базе (затвору) j-го транзистора

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Передача с выхода i-го каскада (i-й транзистор) к эмиттеру (истоку) j-го транзистора

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Передача от источника сигнала к эмиттеру (истоку) i-го транзистора

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Передача от источника сигнала к базе (затвору) i-го транзистора

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Передача с выхода i-го каскада к нагрузке

При определении частных передач, указанных в табл. 1, необходимо учитывать входные и выходные сопротивления соответствующих каскадов. Влияние транзисторов описывается диагональными матрицами


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (7)


размерностью Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, компоненты которых являются передаточными функциями каскадов с общим эмиттером или общим истоком Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и каскадов с общей базой (общим коллектором) или общим затвором (общим стоком) Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

Учитывая, что

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов,Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (8)


из системы (6) получим передаточную функцию электронного устройства


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (9)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

Следовательно, коэффициент усиления любого идеализированного электронного устройства K0 определяется из соотношения


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (10)


Указанные в таблице передачи пассивной части системы для неизбирательных усилителей относятся к цепям межкаскадной связи. Эти цепи являются делителями, образованными выходным сопротивлением i-го каскада и входным сопротивлением (i+1)-го каскада. Используя метод пополнения при определении обратной матрицы, получим


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (11)


где Ki – коэффициент передачи устройства на выходе i-го каскада; Hi – коэффициент передачи устройства при подаче сигнала на эмиттер (исток) i-го транзистора.

Эти локальные передачи определяются соотношениями


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (12)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (13)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (14)


Здесь векторы Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентовi Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов имеют одну единицу на i-й позиции.

Из соотношений (10), (11), (12) следует векторный сигнальный граф (рис. 3), отображающий топологию влияния постоянной времени i-го транзистора (вектор wi отсутствует).


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 3. Векторный сигнальный граф электронной системы при влиянии емкостей i-го транзистора


Согласно методике [6] введем вектор


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (15)


действие которого направлено на изменение не только Нi, но и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. После несложных преобразований [6] получим


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (16)


причем


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (17)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (18)


Подстановка (17), (18), (13), (14), (15) в (16) показывает, что применение дополнительной обратной связи, связывающей вход Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов i-го транзистора с дополнительным входом схемы (компонента вектора Wi), приводит к следующему результату:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (19)


Следовательно, постоянная времени (5) или (4), зависящая от технологии изготовления транзисторов и режима их работы, уменьшается на величину Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. Именно это и создает возможность выбора экономичного режима работы или применения более мягких технологических норм.

Таким образом, указанная на сигнальном графе дополнительная компенсирующая обратная связь является достаточной для уменьшения влияния емкостей как биполярных, так и полевых транзисторов. Из этого же графа (рис. 3) видно, что вектор Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов является единственным истоком обобщенной структуры, и поэтому такая обратная связь является един-ственной.

3. Практическое применение принципа собственной компенсации


Основной неформализованной задачей построения принципиальных схем различных по своему функциональному назначению усилителей является согласование режимов основного транзистора и компонентов, обеспечивающих реализацию компенсирующей цепи обратной связи. В этом и должен проявляться опыт инженера, минимизирующий число альтернативных вариантов. Продемонстрируем это на конкретном примере.

На рис. 4 показана структура усилительного каскада, соответствующая найденным в работе принципам построения. Из соотношений (12), (13), (14), (17), (18) следует


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (20)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – коэффициент усиления каскада с общей базой.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. Структура усилительного каскада с компенсацией влияния Скб


Следовательно, приращение передаточной функции, вызванное влиянием Ск, будет иметь следующий вид:

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (21)


Таким образом, в приведенной структуре, как это видно из (21) и (5), наблюдается умножение численного значения Ск на множитель (1-Кп) и уменьшение ее влияния на частотный диапазон схемы. При этом чувствительность передаточной функции к емкости коллекторного перехода не изменяется.

Важной составляющей успешного решения задачи является также минимизация входной емкости усилительного каскада, являющегося либо входным, либо промежуточным. Именно поэтому в структуре этого четырехполюсника необходимо обеспечить относительно низкое сопротивление нагрузки в коллекторной цепи или при использовании полевых транзисторов в цепи стока. Пример реализации каскада с компенсацией приведен на рис. 5.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов


Рис. 5. Пример реализации широкополосного усилительного каскада


Анализ схемы приводит к следующему выражению:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (22)

где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – постоянные времени, определяемые соотношением (5) для первого и второго транзисторов при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

Учитывая, что Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, влияние Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов на диапазон рабочих частот оказывается в практических схемах незначительным. В приведенных выражениях полагалось, что при экономичных режимах работы Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов>Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. Таким образом, при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов<Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов амплитудно-частотная характеристика каскада является гладкой, и перерегулирование переходной характеристики отсутствует (рис. 6).


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 6. Амплитудно-частотная характеристика каскадов без компенсации влияния Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (1) и с компенсацией (2)


Рассмотрим основные физические процессы в полученной структуре каскада с собственной компенсацией.

Выходной транзистор V1 (рис. 7) выполняет две функции. С одной стороны, он обеспечивает передачу в цепь нагрузки Rн.экв приращений тока Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, пропорциональных входному сигналу (составляющая Suвх.).

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 7. Последовательная компенсация Ск1


Здесь и далее S, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – крутизна и коэффициент передачи по току цепи компенсирующей обратной связи (ЦКОС). С другой стороны, он передает в коллекторную цепь емкостную составляющую Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентовтока базы V1, которая выделяется подсхемой ВП1, а затем с усилением Ki.1 поступает в эмиттер и далее в цепь нагрузки V1:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (23)


Для точного измерения тока Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и компенсации Cк1 необходимо:

обеспечить высокое сопротивление в эмиттерной цепи V1 с помощью подсхемы ЦКОС;

выделить емкостную составляющую тока базы транзистора V1 с помощью ЦКОС. Такой режим обеспечивается близким к нулю входным сопротивлением ЦКОС;

передать ток Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов в эмиттерную цепь V1 с коэффициентом передачи тока Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, близким к единице в широком диапазоне частот и без дополнительных фазовых сдвигов.

При выполнении данных условий в нагрузке V1 произойдет почти полная компенсация двух близких по величине, но противоположных по знаку токов Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

К таким трактовкам теоретических результатов привыкли традиционные схемотехники компонентного уровня. Однако более общие принципы формирования понятий о принципах собственной компенсации можно получить, оперируя дополнительным возвратным отношением электронной схемы.

Дополнительный компенсирующий контур обратной связи характеризуется следующим возвратным отношением


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (24)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – входная проводимость компенсирующей цепи обратной связи.

Если в диапазоне высоких (верхних) частот каскада выполняется неравенство Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, как видно из соотношений (3), (5), возвратная разность анализируемой схемы будет иметь следующий вид


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (25)


что и объясняет эффект собственной компенсации. Действительно, без дополнительной обратной связи Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов образуют паразитную цепь комплексной (близкой к реактивной) обратной связи с положительной возвратной разностью (аналог отрицательной обратной связи), которая и уменьшает в диапазоне высоких частот коэффициент усиления каскада. Введение упомянутого контура, глубина которого непосредственно определяется величиной Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов при выполнении указанных ограничений, приводит к появлению дополнительного противоположного по знаку возвратного отношения (аналог положительной обратной связи), что в конечном итоге и уменьшает влияние Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов на постоянную времени каскада и расширяет диапазон его рабочих частот. Такой анализ физических процессов более перспективен, так как показывает возможность любого уровня компенсации за счет специального проектирования цепи обратной связи (реализация численного значения Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов). Последнее утверждение представляется важным по целому ряду чисто практических соображений и, в первую очередь, в плане возможности взаимной компенсации влияния емкости на подложку в сложных электронных схемах. Кроме этого, настоящая физическая трактовка полученного результата важна в плане влияния и, следовательно, выбора режимов работы основного и дополнительного транзисторов. Так, из (25) следует, что уровень компенсации зависит в основном от численного значения объемного сопротивления базы основного транзистора.


4. Взаимная компенсация емкостей подложки и нагрузки


Применение предложенного выше принципа расширения диапазона рабочих частот может оказаться недостаточным для достижения конкретных целей проекта. Влияние емкости между выходной цепью транзистора и подложкой кристалла (Спi) действует эквивалентно емкости нагрузки и, следовательно, может оказаться доминирующим фактором. В этом случае


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (26)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – коэффициент передачи цепи межкаскадной связи между i-м и j-м каскадами; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – эквивалентная постоянная времени цепи нагрузки i-го каскада; Сi – дополнительная емкость нагрузки i-го каскада.

Тогда, согласно (10) и табл. 1, при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентовi=0 Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов передаточная функция устройства будет иметь следующий вид:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (27)


Учитывая, что


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (28)


получим


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (29)


Применив метод пополнения матрицы, когда


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (30)


получим ряд


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (31)


Где

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (32)


является коэффициентом передачи идеализированного усилителя (отсутствуют реактивные составляющие в моделях транзисторов),


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (33)


коэффициент передачи на выходе i-го каскада при выполнении аналогичных условий,


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (34)


передаточная функция на выходе схемы при подаче сигнала на конденсатор Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов), входящий в структуру нагрузки i-го каскада.

Векторный сигнальный граф схемы, отображающий эти соотношения, приведен на рис. 8.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 8. Векторный сигнальный граф системы при влиянии Спi и Сi

Как отмечалось выше, условия собственной компенсации, вытекающие из (19), являются достаточными и единственными, поэтому сравнения соотношений (11) и (31), (12)–(14) и (32)–(33) показывают невозможность такой компенсации для емкостей нагрузки и подложки. Физическая сторона такого утверждения связана с электрической недоступностью заземленного узла Спi и Сi.

Действительно, как это видно из схемы (рис. 4), собственная компенсация осуществляется действием контура дополнительной (регенеративной) обратной связи через этот же проходной конденсатор. Отметим, что для указанного принципа компенсации такой вывод справедлив и при более сложной структуре паразитных постоянных времени активных элементов [6].

Невозможность собственной компенсации Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов требует детального исследования взаимной компенсации [6]. Для решения этой задачи введем матрицу Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, показанную на рис. 8 пунктиром. Невозможность собственной компенсации Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов требует детального исследования взаимной компенсации [6]. Для решения этой задачи введем матрицу Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, показанную на рис. 8 пунктиром.

Тогда


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (35)


Из системы (35) следует, что результирующее приращение коэффициента передачи К0 определяется следующим соотношением:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (36)


где


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (37)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (38)


Следовательно, для компенсации влияния Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов необходимо выполнить условие


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (39)


Действительно, в этом случае реализуется параметрическое равенство


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (40)


минимизирующее приращение (36).

Таким образом, для реализации принципа взаимной компенсации влияния эквивалентной емкости нагрузки i-го каскада необходимо выход j-го каскада усилителя подключить к выводу дополнительного (в данном случае компенсирующего) конденсатора Сi так, чтобы выполнить условия (40).

Если в структуре усилителя используется последовательное включение каскадов


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (41)


то это условие можно конкретизировать до численного значения дополнительного конденсатора


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (42)


Настоящее соотношение показывает, что эффективность такого способа решения общей задачи зависит от идентичности процессов в тех компонентах, модели которых и характеризуют эти емкости. В этой связи в качестве Сi целесообразно использовать один из активных компонентов в соответствующем режиме работы.

Рассмотрим применение найденного принципа на примере трехкаскадного усилителя (рис. 9).


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 9. Взаимная компенсация влияния Сп и С1 на частотные характеристики усилителя

Здесь при условии К0 ≈ К01 проводимости gвх2 и gвых1 достаточно малы, и влияние СП максимально, что и определяет ее доминирующее значение. В соответствии с (39)–(41) введение С1 при выполнении согласно соотношению (42) следующего условия


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (43)


влияние С1 и СП исключается.

Недостатком взаимной компенсации является относительно высокая чувствительность этого условия к нестабильности Спi и Сi. Так, для указанного на рис. 9 случая относительная чувствительность постоянной времени усилителя и, следовательно, его граничной частоты


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (44)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (45)


непосредственно определяется желаемым (достижимым) уровнем компенсации. Именно поэтому и будет наблюдаться режимная зависимость частоты единичного усиления такого устройства.

В этой связи кардинальным способом решения практических задач является переход на схемотехнику устройств с собственной компенсацией путем изменения геометрии транзисторов и создания под сформулированный здесь принцип «сигнальной» доступности подложки.

В этом случае компенсация влияния соответствующей паразитной емкости совпадает со структурой организации компенсирующего контура влияния Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

На рис. 10 показана топология p-n-p транзистора ФГУП НПП «Пульсар».


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

а) б)

Рис. 10. Топология p-n-p транзистора ФГУП НПП «Пульсар» без компенсации Сп (а) и с компенсацией Сп (б)


Особенность изоляции p-n переходом такого транзистора состоит в том, что вывод от его изолирующего кармана К1 обычно подключается к шине положительного источника питания Еп при металлизации. Однако, если вывод К1 в конкретной схеме соединить с эмиттером p-n-p транзистора (рис. 10б), а эмиттер подключить к Еп через резистор Rэ, сопротивление которого в 5Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов10 раз превышает сопротивление эмиттерного перехода, то в соответствии с (42) эффективное значение емкости на подложку Сп уменьшается:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (46)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – комплексный коэффициент передачи тока эмиттера; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – верхняя граничная частота коэффициента усиления по току эмиттера.

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

а)


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

б)

Рис. 11. Примеры собственной компенсации емкости на подложку p-n-p транзистора V3


Например, в схеме каскодного усилителя рис. 11а, сформированный таким образом вывод К1 от изолирующего кармана и эмиттера p-n-p транзистора V3 должен (для получения эффекта компенсации Сп3) соединяться с шиной положительного источника питания Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов через резистор Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. Это несколько сужает области практического использования такого технического решения, так как высокоомный резистор R1 не всегда удается реализовать. Поэтому в ряде случаев целесообразно введение дополнительного компенсирующего канала на транзисторе V2 (рис. 11б), что позволяет снять ограничение на способ соединения эмиттера входного транзистора V1 с шиной питания Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

Так, для схемы рис. 11б в диапазоне частот Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов эффективная емкость на подложку выходного транзистора V3 согласно (42) определится следующим соотношением:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (47)

компенсация дифференциальный каскад кристалл

где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – коэффициент передачи тока эмиттера транзисторов V2, V3.

На рис. 12 показан вариант построения компенсирующего канала на транзисторе V2.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 12. Вариант построения компенсирующего канала на транзисторе V2


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

а)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

б)

Рис. 13. Каскадный усилитель без компенсации Сп (а) и с компенсацией Сп (б)


На рис. 13 приведены схемы исследованных в среде PSpice каскодных усилителей со стандартной (рис. 13а) и предлагаемой (рис. 13б) топологией.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 1 ЛАЧХ коэффициента передачи по напряжению каскадных усилителей


Амплитудно-частотные характеристики усилителей рис. 13, представленные на рис. 14, свидетельствуют, что рассмотренный способ уменьшения влияния емкости на подложку расширяет частотный диапазон каскада в 6Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов7 раз.

Структурная идентичность компенсирующих контуров в обратной связи, минимизирующих влияние Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов в усилительных каскадах, показывает, что при определенных топологиях транзистора, имеющего максимальное сопротивление нагрузки и, следовательно, коэффициент усиления оказывается возможной одновременная собственная компенсация влияния указанных емкостей. В некоторых практических задачах именно эти дово-ды могут быть решающими для выбора способов схемотехнической реали-зации. В качестве примера, демонстрирующего такой подход, рассмотрим схему каскада, показанную на рис. 15.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

а)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

б)

Рис. 15. Каскадный усилитель с компенсацией Сп и Скб транзистора V2 (а) и его модель в среде PSpice (б)


Из принципов взаимодействия транзисторов V1 и V2 видно, что каскад с общей базой на V2 обеспечивает компенсацию влияния Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов при условии, что вывод изолирующего кармана Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (рис. 10) соединен с его входом. Однако, как и ранее, численное значение Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов оказывается достаточно большим.

Как показывает компьютерное моделирование (рис. 15б), это позволяет обеспечить еще больший выигрыш по верхней граничной частоте (рис. 16).

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 16. ЛАЧХ коэффициента передачи по напряжению каскодных усилителей со стандартной топологией (рис. 13а), топологией с компенсацией только Сп (рис. 13б) и топологией с компенсацией Сп и Скб (рис. 15б)


Недостатком взаимной компенсации является относительно высокая чувствительность этого условия к нестабильности Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. Так, для указанного на рис. 9 случая относительная чувствительность постоянной времени усилителя и, следовательно, его граничной частоты определяется соотношениями (42)–(44).

Завершая обсуждение найденных принципов собственной и взаимной компенсации влияния паразитных емкостей полупроводниковых компонентов, целесообразно отметить два обстоятельства, имеющих, возможно, самостоятельное значение в аналоговой микросхемотехнике.

Во-первых, относительно хорошая корреляция полупроводниковых емкостей отдельных областей кристалла, их режимная зависимость позволяют без существенного увеличения погрешности реализации граничной частоты усилителей и запаса устойчивости по фазе широко использовать сочетание собственной и взаимной компенсации. В этом случае создаваемый компенсирующий контур обратной связи с положительным возвратным отношением должен иметь достаточную (>1) глубину для создания условий чередования знаков в поправочных номиналах.

Например, постоянная времени, обусловленная влиянием проходной емкости транзистора с учетом действия контура обратной связи, является отрицательной величиной и частично компенсирует действия положительной постоянной, определяемой емкостью подложки.

Во-вторых, принцип действия компенсирующего контура обратной связи можно использовать и для частотной коррекции характеристик усилителя в целом. Так, в СВЧ ОУ для SiGe технологии доминирующим фактором может оказаться влияние «времени пролета», поэтому даже при минимальной «электрической длине» схемы может быть реализован избыточный запас устойчивости по фазе, который и можно использовать для расширения диапазона рабочих частот. На рис. 17 приведена схема такого ОУ для технологического процесса SGB25VD.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 17. Схема СВЧ ОУ со взаимной компенсацией влияния Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов


Здесь корректирующий конденсатор Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов образует контур с положительным возвратным отношением и компенсирует влияние емкости нагрузки в усилительном каскаде. Результаты моделирования схем в среде Cadence приведены в табл. 2.

Таблица 2

Результаты моделирования схемы СВЧ ОУ

Условие Параметр

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов,

(ГГц)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов,

(град)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов,

(кВ/мкс)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов,

(кВ/мкс)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов,

(В)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

16,2 56,3 7,23 4,54 0,8

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

17,6 47,7 6,87 4,51 0,8

Таким образом, сформулированный принцип компенсации дает позитивные результаты в диапазоне сверхвысоких частот и может использоваться для решения широкого класса практических задач.

Эффективность использования настоящего принципа собственной компенсации в практических разработках зависит от соотношения качественных показателей основных и дополнительных транзисторов. Развитие этого подхода обсуждается в других работах автора и его коллег, однако всегда удается получить расширение диапазона рабочих частот устройства в несколько раз либо существенно уменьшить величину потребляемого тока.


5. Структурная оптимизация дифференциальных каскадов


Для получения фундаментальных соотношений и качественных выводов в этом классе задач рассмотрим основные свойства обобщенной структуры (рис. 2), которая поглощает любые электронные устройства, построенные на полевых и(или) биполярных транзисторах.

В этом случае диагональные матрицы Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов состоят из компонентов


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (48)

которые являются коэффициентами усиления i-го каскада по инвертирующему (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) и неинвертирующему (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) входам, где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – эквивалентная крутизна усиления i-го активного элемента; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – эквивалентное сопротивление нагрузки в цепи коллектора или стока i-го транзистора, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – эквивалентное сопротивление в цепи эмиттера или истока (в режиме эмиттерного или истокового повторителя). Учитывая, что


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов; Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (49)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов – коэффициент передачи эмиттерного или истокового повторителя. Решение системы (6) позволяет получить передаточную функцию обобщенной структуры


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (50)


При подаче на i-й и j-й входы активных элементов синфазного сигнала (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) структура векторов, входящих в функции (50), имеет следующий вид


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (51)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (52)


В случае использования дифференциального сигнала на тех же входах (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) знак j-й компоненты этих векторов изменится на противоположный

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (53)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (54)


Таким образом, решение поставленной задачи сводится к поиску компонентов матриц Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, обеспечивающих минимизацию функций


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (55)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (56)


при выполнении ограничений на дифференциальный коэффициент усиления


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (57)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (58)


С точки зрения развития схемотехники анализируемых узлов решение задачи (55) и (56) в базисе функциональных компонент матриц Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов целесообразно сосредоточить на поиске структурных признаков дифференциальных каскадов, которые в последующем ранжируются по критериям достижимого дифференциального коэффициента усиления и параметрической чувствительности.

Для дифференциальных каскадов приведенные выше соотношения можно конкретизировать при N=2, тогда из (55) для Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов коэффициент передачи для синфазного напряжения на выходе первого канала

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (59)


а для Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов на выходе второго канала


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (60)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (61)


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Аналогично из (57) вытекает выражение для дифференциальных коэффициентов усиления


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (62)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (63)


Соотношения (59), (62), а также (60), (63) достаточны для решения задачи минимизации коэффициента передачи синфазного сигнала при физически осуществимых ограничениях на дифференциальный коэффициент усиления как для симметричного, так и для несимметричного выходов.

Рассмотрим вариант построения дифференциального каскада без дополнительных местных обратных связей, когда


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (64)


В этом случае


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (65)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (66)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (67)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (68)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

Учитывая полную симметричность выражений (65), (66) и (67), (68), связанную с индексами локальных передач базисных структур и элементов связи между ними, дальнейший анализ вариантов решения задачи можно рассматривать только для дифференциального каскада с одним выходом. Так, из (65) и (67) следует, что минимизация Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и максимизация Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов возможны при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов), поэтому


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов , (69)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (70)

Для выполнения параметрического условия


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (71)


задача имеет однозначное решение


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (72)


а при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов осуществляется также и максимизация Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (73)


Таким образом, наличие связи выхода 2 каскада с инвертирующим входом 1 каскада (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) обеспечивают минимизацию коэффициента ослабления синфазного сигнала на его выходе. Указанная функциональная связь эквивалентна связи (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) выхода повторителя первого каскада с неинвертирующим входом второго каскада.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентовСинтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 18. Классический дифференциальный каскад.

Действительно,


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (74)


с учетом соотношений (49) и (71)


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (75)


Условие (75) хорошо известно. Например, при использовании одного источника тока (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) в общей цепи эмиттера (истока) 1 и 2 транзисторов следует


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (76)


Однако в случае применения в цепях истока или эмиттера резистора (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов на рис. 18) или незначительной величиной напряжения Эрли, используемого в качестве источника тока транзистора, условие (76) нарушится, и минимизация Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов параметрически оказывается невозможной.

Из соотношений (49), (65), (66) при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов следует


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (77)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (78)

где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

Таким образом, параметрическая чувствительность коэффициента передачи синфазного напряжения к нестабильности малосигнальных параметров транзисторов (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов,Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) не превышает единицы. Далее будет показано, что только эта схема характеризуется таким свойством и поэтому не требует согласования различных компонентов.

Необходимая параметрическая «степень свободы», как видно из (65), может быть создана в случае применения дополнительных каскадов, обеспечивающих любое численное значение Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов не только с положительным, но и с отрицательным значением. Действительно, при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов условие минимизации Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов связано с выполнением условия


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (79)


при этом численное значение дифференциального коэффициента усиления остается неизменным. Несложно установить, что функциональная связь Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов реализуется инвертирующим каскадом, например, так, как это показано на рис. 19.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 19. Квазидифференциальный каскад

Совместное решение системы уравнений, образованной (78) и (79), при условии Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов приводит к необходимости реализовать следующее параметрическое условие


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (80)


минимизации Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и максимизации дифференциального коэффициента усиления


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (81)


Из условия (79) также следует равенство


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (82)


которое указывает на возможность реализации связи выхода первого и выхода второго каскадов через инвертирующий каскад (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) так, как это показано на рис. 20.

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 20. Дифференциальный каскад с динамической нагрузкой


Из анализа схемы следует, что


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (83)


поэтому минимизация Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов требует согласования малосигнальных параметров n-p-n и p-n-p транзисторов, для выполнения условия


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (84)


что и объясняет высокую (больше 1) параметрическую чувствительность этого параметра. Однако дифференциальный коэффициент усиления схемы в силу динамической нагрузки каскада (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) оказывается достаточно большим


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, (85)


что в ряде случаев позволяет использовать значительные величины Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов для увеличения его граничного напряжения.

Для уменьшения влияния малосигнальных параметров транзисторов на коэффициент передачи синфазного напряжения можно в структуре динамических нагрузок использовать местную отрицательную обратную связь, например, так, как это показано на рис. 21.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 21. Дифференциальный каскад с динамической нагрузкой и дополнительным контуром обратной связи


В этом случае


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (86)


для минимизации коэффициента передачи синфазного напряжения необходимо выполнить условие


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (87)

Однако параметрическая чувствительность к дополнительным эмиттерным сопротивлениям не уменьшается. Выполнение условия (87) уменьшает дифференциальный коэффициент усиления каскада


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (88)


Полученные результаты являются общими и показывают возможные способы построения дифференциальных каскадов. Строго говоря, условия (71), (79) могут быть реализованы при использовании цепей базы (затвора) основных (V1, V2) транзисторов. В этом случае знак локальной передачи Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов необходимо изменить на противоположный, т.е. использовать передачу Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.

Отметим, что такие структуры позволяют также существенно повысить граничное напряжение дифференциального каскада и, следовательно, скорость нарастания выходного напряжения соответствующего усилителя.

Полученные результаты хорошо известны и имеют чисто методическое значение. Они показывают возможные схемотехнические сочетания каскадов без использования дополнительных обратных связей (условие (64)). Однако соотношения (59)–(63) показывают, что диагональные элементы матриц Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, которые являются признаками дополнительных обратных связей, оказывают аналогичное влияние на синфазный и дифференциальный коэффициенты передачи схем.

Соотношения (74) и (79) устанавливают основные структурные признаки простейших дифференциальных каскадов, когда минимизация коэффициента передачи синфазного напряжения не уменьшает его дифференциальный коэффициент усиления. Более детальное их сопоставительное исследование показывает, что условие (74) обеспечивает более мягкие требования к стабильности эквивалентной крутизны применяемых транзисторов. Именно поэтому при разработке методики их структурного синтеза это условие можно использовать в качестве базового.

При Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов=1


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (89)


Тогда из (59) и (60) при условии, что инвертирующие входы активных элементов не используются для организации контуров дополнительных обратных связей (Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов), несложно получить следующие базовые соотношения:


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (90)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (91)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (92)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (93)


При наличии указанной в (74) функциональной связи Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (рис. 19 при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов) предельное значение коэффициентов ослабления синфазного сигнала с учетом (48) и (49) определяется следующими соотношениями


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (94)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов (95)


где Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 22. Дифференциальный каскад с дополнительными обратными связями


Таким образом, если Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов и Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов функции (90) и (91) минимизируются в пространстве параметров основных каскадов и вводимых цепей межкаскадной связи. Подстановка условий (89) и его симметричного эквивалента в (61) показывает, что при Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов знаменатели приведенных выше соотношений равны 1 и при указанной особенности цепей межзвеньевых связей уменьшение коэффициента усиления каскада не наблюдается. Принципиальная схема такого каскада приведена на рис. 19. Анализ схемы при условии идентичности плеч приводит к следующему результату


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов; (96)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов; (97)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов; (98)

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. (99)


Теоретически реализация аналогичной компенсирующей обратной связи возможна и за счет применения цепей базы (затвора) основных транзисторов, в этом случае Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов, Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. Однако при этом возникают проблемы с реализацией входных цепей дифференциальных каскадов.

Приведенный выше принцип построения дифференциальных каскадов и усилителей увеличивает коэффициент ослабления синфазного сигнала при неизменном дифференциальном коэффициенте усиления. Для подтверждения данного теоретического положения выполнено моделирование различных схем в среде PSpice. Для наглядности можно продемонстрировать также инженерный алгоритм построения таких дифференциальных каскадов, который следует из приведенных выше результатов.

Рассмотрим простейший дифференциальный каскад, приведенный на рис. 23. Его параметры приведены в табл. 3.

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 23. Структура обычного дифференциального каскада в среде PSpice


Таблица 3

схемы

№ кан. Параметры


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов



дБ МГц В мВ дБ МГц В мкА мкА В
Рис. 23 1 -62 1,7 -4 -50 -6 670 4,3 107 213 5

2













4,9 400





Рис. 24 1 -55 6,1 -4 -50 -6 63 4,3 106 423 5

2

4,9 400





Рис. 25 1 -113 0,012 -2,7 -50 -6 56 4,3 106 465 5




4,8 400


125


При моделировании схемы использовались компоненты радиационностойкого аналогового базового матричного кристалла (АБМК) [3]. Относительно небольшой коэффициент ослабления синфазного напряжения (62 дБ), как это отмечалось ранее, объясняется влиянием сопротивления участка цепи коллектор-эмиттер транзистора, на базе которого реализован источник тока. В соответствии со структурной схемой рис. 22 для увеличения коэффициента ослабления синфазного сигнала в схему необходимо ввести две компенсирующие обратные связи, действие которых должно также обеспечить неизменным дифференциальный коэффициент передачи каскада. Именно такая схема приведена на рис. 2 При ее моделировании использовались транзисторы указанного выше АБМК и сохранены режимы их работы.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 2 Дифференциальный каскад с дополнительными обратными связями


Как видно из табл. 3, несмотря на ожидаемый результат ослабление синфазного напряжения не наблюдается. Однако это имеет достаточно простое объяснение: использованные в схеме дополнительные p-n-p транзисторы характеризуются значительно более низким сопротивлением коллекторного перехода. Именно поэтому, как следует из соотношения (74), и увеличивается коэффициент передачи синфазного напряжения. Необходимо также отметить значительное увеличение диапазона рабочих частот для этого сигнала, которое также объясняется действием введенных контуров. Действительно, даже не привлекая дополнительных исследований, из соотношений (77), (78), (96), (97) следует, что эффективность действия контуров возрастает при уменьшении начального значения коэффициента ослабления синфазного напряжения.

Необходимо отметить отсутствие перерегулирования в предложенной схеме, которое характерно для простейшего дифференциального каскада. Заметное уменьшение диапазона рабочих частот для дифференциального напряжения объясняется значительным увеличением емкости нагрузки каскада не только за счет влияния паразитных емкостей транзисторов p-n-p типа, но и за счет увеличения соответствующей емкости на подложку.

Таким образом, в рамках указанных компонентов повышение эффективности действия контуров обратных связей возможно только при условии разделения узла ввода сигнала обратной связи и эмиттерных цепей основных транзисторов. Решение данной задачи возможно в рамках схемы, показанной на рис. 25. Наличие такого преобразования обеспечивает увеличение коэффициента ослабления синфазного сигнала практически на три порядка.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 25. Структура дифференциального каскада с максимальным коэффициентом ослабления синфазного сигнала


Как видно из соотношений (96) и (97), идентичность основных транзисторов должна обеспечивать нулевое значение Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов. Однако в реальных схемах эта величина ограничивается влиянием сопротивления коллекторного перехода, образующего цепь прямой передачи входного сигнала из базы в коллектор основных транзисторов.

Полученные выше схемы наглядно демонстрируют место структурного синтеза в аналоговой микросхемотехнике. Любые результаты анализа обобщенной структуры позволяют выявить фундаментальные ограничения в исследуемом классе электронных схем, показать способы решения практических задач и перевести их из области эвристических процедур в область формализованных математических преобразований. Однако для получения на этой основе практических схем по-прежнему необходим детальный анализ возможных схемотехнических конфигураций, вскрытие причин, обусловливающих те или иные результаты, поиск способов преодоления трудностей. Именно эти проблемы и создали «специальный язык» схемотехники, который по своей значимости ничем не уступает языку алгоритмизации проектных процедур. С методической точки зрения композиция этих двух подходов и открывает новые горизонты в микросхемотехнике. Так, решение главной в предметной области задачи и уверенность в ее если не оптимальном, то рациональном решении позволяет перевести эти результаты в область нового практического применения, используя язык схемотехники даже без поиска физического объяснения найденной закономерности. Сказанное можно продемонстрировать на конкретной задаче применения синтезированных дифференциальных каскадов. Первоначально сформулируем практическую задачу.

Создание смешанных систем на кристалле не только аналого-цифро-вого, но и цифроаналогового типов предполагает разработку широкодиапазонных и энергоэкономичных инструментальных усилителей как с фиксированными, так и с управляемыми параметрами. Эти устройства являются основой как для аналоговых портов, так и для целого класса сложно-функциональных блоков. Кроме этого, их схемотехника должна ориентироваться на базовые компоненты и технологические процессы, применяемые при производстве СнК. С этих позиций использование классических инструментальных усилителей, состоящих из трех прецизионных операционных усилителей и семи резисторов, оказывается невозможным по следующим основным причинам. Во-первых, коэффициент ослабления синфазного сигнала будет непосредственно определяться точностью изготовления этих резисторов. Например, для резисторов с классом точности 0,1 % Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов не превышает 60 дБ, что при полупроводниковой технологии требует специальной дорогостоящей функциональной подстройки. Во-вто-рых, для реализации трех ОУ необходимо относительно большое число транзисторов (75–100), с оптимальным режимом работы соответствующих каскадов. Наконец, и это самое главное, потребляемая от источников питания мощность оказывается соизмеримой с мощностью программируемого ядра СнК.

В [6] отмечалось, что решение таких задач целесообразно ориентировать на мультидифференциальные ОУ (МОУ), в рамках которых используется только один выходной и промежуточные каскады. Однако базовая структура входных цепей МОУ непосредственно определяет достижи- мый Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов при заданном дифференциальном коэффициенте усиления. Таким образом, для решения различных задач необходимо оценить целесообразность использования данной структуры во входных каскадах этих усилителей.

На рис. 26 приведена структурная схема входного каскада для МОУ с дополнительными компенсирующими синфазный сигнал обратными связями и эмиттерными сопротивлениями для расширения диапазона линейной работы. В табл. 4 приведены результаты ее поэтапного преобразования:

вариант 1: простейший входной каскад без дополнительных обратных связей и эмиттерных сопротивлений;

вариант 2: входной каскад с дополнительными, компенсирующими синфазный сигнал обратными связями, но без эмиттерных сопротивлений;

вариант 3: входной каскад с эмиттерными сопротивлениями для расширения диапазона линейной работы, но без дополнительных обратных связей;

вариант 4: входной каскад, приведенный на рис. 26.

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 26. Структурная схема входного каскада для МОУ с дополнительными обратными связями и эммитерными сопротивлениями


Таблица 4

Результаты моделирования мультидифференциальных каскадов

Вариант Параметры

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов


дБ Гц В мВ дБ МГц В
1 -82 2500

-3,3


1,7

-40


40

30 22 1,1








2 -119 76

-3,3

3,3

-40

40

26 16 2,6








3 -82 2500

-5

1,6

-2000

850

-0,2 21 1,1








4 -119 76

-3,3

3,3

-1300

1300

-0,8 16 2,7
Примечание. Для всех вариантов Еп=5в.

Из табл. 4 следует, что применение эмиттерных сопротивлений значительно уменьшает дифференциальный коэффициент усиления, но не влияет на эффективность действия контуров обратных связей. Их примене-ние расширяет класс задач, решаемых предложенным методом. В табл. 4 также отмечено уменьшение дифференциального коэффициента усиления, которое объясняется влиянием входного сопротивления транзисторов p-n-p типа. На рис. 27 приведены частотные зависимости коэффициента передачи синфазного сигнала всех вариантов, откуда видно значительное увеличение коэффициента ослабления синфазного напряжения за счет использования дополнительных обратных связей.


Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентов

Рис. 27. Частотная зависимость коэффициента передачи синфазного сигнала мультидифференциальных каскадов


Таким образом, найденный метод построения дифференциальных каскадов действительно позволяет существенно (практически на три порядка) увеличить коэффициент ослабления синфазного сигнала. Это достигается путем введения дополнительных компенсирующих обратных связей. При этом предложенные преобразования не влияют на дифференциальный коэффициент усиления. Уменьшение граничной частоты полосы пропускания дифференциального каскада объясняется влиянием входных емкостей каскадов на p-n-p транзисторах. Как видно из табл. 3 и 4, граничные частоты дифференциальных каскадов с дополнительными обратными связями практически совпадают.

Синтез электронных схем на компонентном уровне и компенсация влияния паразитных емкостей полупроводниковых компонентовБиблиографический список


Крутчинский, С.Г. Расширение диапазона перестройки аналоговых ARC-фильтров [Текст] / С.Г. Крутчинский, Ю.И. Иванов // Электроника и связь : тем. выпуск по материалам Междунар. НТК «Проблемы физической и биомедицинской электроники». – Киев, 2009.

Крутчинский, С.Г. Расширение диапазона рабочих частот ограничителей спектра с низким дрейфом нуля [Текст] / С.Г. Крутчинский, Д.А. Щекин // Проблемы современной аналоговой микросхемотехники : сборник материалов Междунар. науч.-практ. семинара. – Шахты, 2008. – С. 83–89.

Крутчинский, С.Г. Расширение диапазона рабочих частот перестраиваемых ARC-устройств [Текст] / С.Г. Крутчинский // Радиоэлектроника. – № 11. – Т. 31. – С. 74–76.

Крутчинский, С.Г. Синтез структур аналоговых интерфейсных ус-ройств [Текст] / С.Г. Крутчинский // Электроника и связь. – 2010. – № 8. – Т. 2. – С. 320–324.

Крутчинский, С.Г. Синтез структур микроэлектронных устройств аналоговой обработки сигналов [Текст] / С.Г. Крутчинский // Проблемы физической и биомедицинской электроники : сборник докладов Междунар. НТК. – Киев, 2006.

Крутчинский, С.Г. Синтез структур прецизионных аналоговых устройств [Текст] / С.Г. Крутчинский // Теория и системы управления. – 2008. – № 6. – С. 164–172.

Крутчинский, С.Г. Собственная компенсация в электронных усилителях [Текст] / С.Г. Крутчинский, Н.Н. Прокопенко, Е.И. Старченко // Электроника и связь. – 2007. – № 21. – С. 85–91.

Крутчинский, С.Г. Структурная оптимизация дифференциальных каскадов [Текст] / С.Г. Крутчинский // Известия ЮФУ. Серия «Технические науки». – 2009. – № 7. – С. 41–48.

Крутчинский, С.Г. Структурно-топологические признаки ARC-схем с собственной компенсацией [Текст] / С.Г. Крутчинский // Изв. вузов. Радиоэлектроника. – 2008. – Т. 37, № 1–2.

Крутчинский, С.Г. Структурные признаки дифференциальных каскадов [Текст] / С.Г. Крутчинский // Известия ЮФУ. Серия «Технические науки». – 2008. – № 7. – С. 6–12.

Крутчинский, С.Г. Структурный синтез аналоговых устройств [Текст] / С.Г. Крутчинский // Проблемы физической и биомедицинской электроники : тем. выпуск по материалам Междунар. НТК. Инженерные приложения «Электроника и связь». – Киев, 2009. – С. 207–211.

Крутчинский, С.Г. Структурный синтез аналоговых электронных схем [Текст] / С.Г. Крутчинский. – Ростов н/Д. : Изд-во СКНЦ ВШ, 2007. – 188 с.

Крутчинский, С.Г. Структурный синтез звеньев второго порядка с решающими усилителями [Текст] / С.Г. Крутчинский // Избирательные системы с обратной связью : межвуз. тематический научный сбор-ник. – Таганрог, 2006.

Крутчинский, С.Г. Структуры современных аналоговых интерфейсов [Текст] / С.Г. Крутчинский, И.П. Щербинин // Электроника и связь. – 2007. – № 21. – С. 95–101.

Крутчинский, С.Г. Схемотехника RC/2-фильтров ВЧ и СВЧ диапазонов [Текст] / С.Г. Крутчинский, А.С. Будяков, А.И. Гавлицкий // Проблемы современной аналоговой микросхемотехники : труды 6-го Междунар. НПС. – 2007. – Ч. 1. – С. 133–142.

Кряжева, О.Р. Оптимальная реализация ARC-цепей [Текст] / О.Р. Кряжева, Б.С. Саркисян // Избирательные системы с обратной связью. – 2009. – Вып. 5. – С. 25–27.

Кустов, О.В. Операционные усилители в линейных цепях [Текст] / О.В. Кустов, В.З. Лундин. – М. : Связь, 2008. – С. 141.

Ланкастер, П. Теория матриц [Текст] : пер. с англ. / П. Ланкастер. – М. : Наука, 2010. – 272 с.

Ланнэ, А.А. Оптимальная реализация линейных электронных цепей [Текст] / А.А. Ланнэ, Б.С. Саркисян // Радиотехника. – 2009. – Т. 34, № 7. – С. 14–20.

Ланнэ, А.А. Оптимальная реализация линейных электронных RLC-схем [Текст] / А.А. Ланнэ, Е.Д. Михвйлова, Б.С. Саркисян, Я.Н. Матвийчук. – Киев : Наукова думка, 2008. – 205 с.

Лурье, О.Б. Интегральные микросхемы в усилительных устройствах [Текст] / О.Б. Лурье. – М. : Радио и связь, 2008. – 175 с.

Лыпарь, Ю.И. Проектирование оптимальных структур активных RC-фильтров [Текст] / Ю.И. Лыпарь, Д.А. Скобейка // Избирательные системы с обратной связью. – 2007. – Вып. 6. – С. 141.

Лыпарь, Ю.И. Структурный синтез электронных цепей [Текст] / Ю.И. Лыпарь. – Л. : ЛПИ, 2009. – 84 с.

Максимович, Н.Г. Методы топологического анализа электрических цепей [Текст] / Н.Г. Максимович. – Львов : Изд-во Львовского ун-та, 2007. – 258 с.

Масленников, В.В. Избирательные RC-усилители [Текст] / В.В. Масленников, А.П. Сироткин. – М. : Энергия, 2010. – 215 с.

Мееров, М.В. Синтез структур систем автоматического регулирования высокой точности [Текст] / М.В. Мееров. – М. : Наука, 2007. – 423 с.

Немудров, В.Г. Системы на кристалле. Проектирование и развитие [Текст] / В.Г. Немудров, Г. Мартин. – М. : Техносфера, 2006. – 216 с.

Остапенко, А.Г. Анализ и синтез линейных радиоэлектронных цепей с помощью графов [Текст] / А.Г. Остапенко. – М. : Радио и связь, 2009. – 280 с.

Прокопенко, Н.Н. Архитектура и схемотехника быстродействующих операционных усилителей [Текст] / Н.Н. Прокопенко, А.С. Будяков. – Шахты : Изд-во ЮРГУЭС, 2006. – 230 с.

Прокопенко, Н.Н. Архитектура и схемотехника с собственной и взаимной компенсацией импедансов [Текст] / Н.Н. Прокопенко, Н.В. Ковбасюк. – Шахты : Изд-во ЮРГУЭС, 2007. – С. 325.

Прокопенко, Н.Н. Быстродействующий СВЧ-операционный усилитель с нелинейной токовой обратной связью [Текст] / Н.Н. Прокопенко, А.С. Будяков, Н.В. Ковбасюк // Актуальные проблемы твердотельной электроники и микроэлектроники : труды 10-й Междунар. науч. конф. и школы-семинара. – Таганрог, 2006. – Ч. 2. – С. 161–164.

Прокопенко, Н.Н. Нелинейная активная коррекция в прецизионных аналоговых микросхемах [Текст] / Н.Н. Прокопенко. – Ростов н/Д. : Изд-во СКНЦ ВШ, 2010. – 224 с.

Свирщева, Э.А. Алгоритм и программа синтеза RC-схем с операционными усилителями в дифференциальном включении [Текст] / Э.А. Свирщева, А.И. Минаев // Избирательные системы с обратной связью. – Таганрог, 2008. – Вып. 4. – С. 185–186.

Сигорский, В.П. Проблемная адаптация систем автоматизированного проектирования [Текст] / В.П. Сигорский // Автоматизация проектирования в электронике. – Киев : Техника, 2008. – Вып. 26. – С. 3–14.

Синтез активных RC-цепей. Современное состояние и проблемы [Текст] / под ред. А.А. Ланнэ. – М. : Связь, 2009. – С. 296.

Старченко, Е.И. Мультидифференциальные операционные усилители [Текст] / Е.И. Старченко // Проблемы современной аналоговой микросхемотехники : сборник трудов МНПС. – Шахты, 2007. – С. 35–42.

Тафт, В.А. Спектральные методы расчета нестационарных цепей и систем [Текст] / В.А. Тафт. – М. : Энергия, 2008. – 272 с.

Торговников, Р.А. Приборно-технологическое моделирование SiDe биполярных и МОП-транзисторов структур СБИС [Текст] / Р.А. Торговников // Проблемы разработки перспективных микроэлектронных систем : материалы Всерос. науч.-техн. конф. – Подмосковье, 2006. – С. 173–178.

Фаддеева, В.И. Вычислительные методы линейной алгебры [Текст] / В.И. Фаддеева, Д.К. Фаддеев. – М. : Физматгиз, 2010. – 655 с.

Филаретов, Г.А. Организация структуры критериев в задачах векторной оптимизации радиотехнических цепей и систем [Текст] / Г.А. Филаретов, Л.Б. Шустерман, Т.В. Мазюкевич // Информатика. Сер. Автоматизация проектирования. – 2008. – Вып. 3. – С. 45–54.

Чибизов, Д.Г. Автоматизация процедур поиска решений при структурном синтезе нестационарных ARC-схем с расширенным частотным и динамическим диапазонами [Текст] / Д.Г. Чибизов // Интеллектуальные САПР. Тем. вып. Известия ТРТУ. – 2009. – № 3. – С. 224–228.

Чибизов, Д.Г. Структурный синтез гибридных фильтров Калмана-Бьюси [Текст] : дис. … канд. техн. наук / Чибизов Д.Г. – Таганрог, 2009. – 202 с.

Похожие работы:

  1. • Исследование влияния конструктивного выполнения ...
  2. • Эволюция подходов к синтезу и структурной оптимизации ...
  3. • Расчет надежности конструкции детектора близости
  4. • Усилительные свойства одиночных каскадов
  5. • Базисные структуры электронных схем
  6. • Основы проектирования интегральных микросхем ...
  7. • Базовые схемы режимов самовозбуждения
  8. • Структурный синтез устройств с ...
  9. • Критерии устойчивости линейных систем
  10. • Усилительные каскады в области высоких частот
  11. • Полупроводниковые приборы
  12. • Вопросы истории отечественного береговедения
  13. • Сверхбольшие интегральные схемы
  14. • Усилитель мощности звуковой частоты
  15. • Линейные устройства с дифференциальными операционными ...
  16. • Расчёт элементов эмиттерно-связанной логике
  17. • Автоматизированное проектирование СБИС на базовых матричных ...
  18. • Усилительные каскады в области высоких частот
  19. • Проектирование оптимальных структур активных RC ...
Рефетека ру refoteka@gmail.com