Рефотека.ру / Коммуникации и связь

Реферат: Устойчивость линейных систем автоматического управления

Реферат

на тему:

"Устойчивость линейных систем автоматического управления"


1. Общие понятия устойчивости


Устойчивость – это свойство системы возвращаться в исходное состояние после вывода ее из состояния равновесия и прекращения действия возмущения. Устойчивость – это одно из основных требований, предъявляемых к системе. Если система не устойчива, то она не работоспособна. Рассмотрим математическое понятие устойчивости.

Движение линейной системы автоматического управления описывается линейным, неоднородным уравнением:


Устойчивость линейных систем автоматического управления


при этом правая часть – входное воздействие, а левая – реакция выхода.

Решение уравнения можно записать в виде:


Устойчивость линейных систем автоматического управления (1)


где Устойчивость линейных систем автоматического управления- представляет собой общее решение однородного уравнения и определяет переходный процесс; Устойчивость линейных систем автоматического управления- представляет собой частное решение неоднородного уравнения и определяет установившийся режим.

Общее решение однородного уравнения имеет вид:


Устойчивость линейных систем автоматического управления, (2)


где: Ск – постоянные интегрирования, которые зависят от начальных условий; Устойчивость линейных систем автоматического управления- корни характеристического уравнения:


Устойчивость линейных систем автоматического управления

Рассмотрим характер решения при различных значениях корней характеристического уравнения.

1. Если корни действительные однократные


Устойчивость линейных систем автоматического управления


2. Если корни действительные кратные


Устойчивость линейных систем автоматического управления


3. Если корни комплексно – сопряженные однократные


Устойчивость линейных систем автоматического управления


4. Пусть корни комплексно – сопряженные кратные


Устойчивость линейных систем автоматического управления


Для того чтобы система была устойчивой решение должно удовлетворять условию


Устойчивость линейных систем автоматического управления (3)


Это условие выполняется, если корни характеристического уравнения системы расположены в левой полуплоскости комплексной плоскости P.

Для устойчивости линейной системы необходимо и достаточно, чтобы корни ее характеристического уравнения располагались в левой полуплоскости комплексной плоскости P.

Характеристическое уравнение системы можно представить в виде:


Устойчивость линейных систем автоматического управления (4)


Если уравнение содержит хотя бы один положительный корень, то хотя бы один коэффициент характеристического уравнения будет отрицательным. Необходимое, но недостаточное условие устойчивости (при n > 2) системы – это положительность коэффициентов характеристического уравнения.

Для нахождения корней характеристического уравнения необходимо решать алгебраические уравнения. Аналитическое решение уравнений 3-го и 4-го порядка громоздки, а уравнение выше 4-го порядка не имеют аналитического решения.

В теории автоматического управления разработан ряд так называемых критериев устойчивости, которые позволяют, не решая уравнений определять устойчивость систем.


2. Критерий устойчивости Рауса-Гурвица


Для устойчивости линейной системы необходимо и достаточно, чтобы при а0 >0 определитель Гурвица, составленный для характеристического уравнения Устойчивость линейных систем автоматического управления, и все его диагональные миноры были положительны.

Определитель Гурвица имеет вид:


Устойчивость линейных систем автоматического управления (5)


Диагональные миноры определяются соотношениями


Устойчивость линейных систем автоматического управления (6)


Рассмотрим частные случаи

Для системы первого порядка (n = 1) характеристическое уравнение имеет вид:

Устойчивость линейных систем автоматического управленияУсловие устойчивости: Устойчивость линейных систем автоматического управления

Для системы второго порядка (n=2) характеристическое уравнение имеет вид:


Устойчивость линейных систем автоматического управления


Условие устойчивости: Устойчивость линейных систем автоматического управления

Для системы третьего порядка (n = 3) характеристическое уравнение имеет вид:

Устойчивость линейных систем автоматического управления


Условие устойчивости:Устойчивость линейных систем автоматического управления

Для систем 1-го и 2-го порядка положительность коэффициентов характеристического уравнения является необходимым и достаточным условием устойчивости системы. Для системы 3-го порядка должно выполняться дополнительное условие Устойчивость линейных систем автоматического управления

Достоинство критерия:

Высокая точность, так как это алгебраический критерий.

Простота для систем невысокого порядка.

Недостатки критерия:

Необходимо иметь математическое описание системы.

Сложность применения для систем высокого порядка.

Рассмотрим примеры определения устойчивости по критерию Гурвица.

Пример 1. Определить устойчивость системы, если ее характеристическое уравнение имеет вид:Устойчивость линейных систем автоматического управления

Условие устойчивости Устойчивость линейных систем автоматического управления не выполняется, следовательно, система не устойчива.

Пример 2. Определить устойчивость если передаточная функция разомкнутой системы имеет вид


Устойчивость линейных систем автоматического управления.


Решение:

Определяем передаточную функцию замкнутой системы

Устойчивость линейных систем автоматического управления


Запишем характеристическое уравнение и условие устойчивости


Устойчивость линейных систем автоматического управления.


Условие устойчивости выполняется, следовательно, система устойчива.

Пример 3. Для заданной системы (рис. 1) определить условие устойчивости и критический коэффициент усиления, т.е. коэффициент усиления, при котором система находится на границе устойчивости.


Решение:

Определяем передаточную функцию разомкнутой системы


Устойчивость линейных систем автоматического управления


Определяем передаточную функцию замкнутой системы


Устойчивость линейных систем автоматического управления


Запишем характеристическое уравнение и условие устойчивости

Устойчивость линейных систем автоматического управления


4. Определим критический коэффициент усиления


Устойчивость линейных систем автоматического управления


3. Критерий устойчивости Михайлова


Для оценки устойчивости систем управления кроме алгебраических критериев, используются частотные критерии Михайлова и Найквиста.

Доказательство частотных критериев базируется на следствии из принципа аргумента.

Допустим, задан полином


Устойчивость линейных систем автоматического управления (7)


Устойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управления


Если система n – го порядка содержит m неустойчивых полюсов, то угол поворота вектора D (jw) равен:


Устойчивость линейных систем автоматического управления (8)


Формулировка критерия Михайлова:

Замкнутая система автоматического управления устойчива, если характеристическая кривая (годограф Михайлова), начинаясь на положительной вещественной оси в точке an, при изменении частоты 0Ј w Ј Ґ последовательно проходит число квадрантов равное степени характеристического полинома.

При этом


Устойчивость линейных систем автоматического управления (9)


Пример 4. Допустим, задан характеристический полином системы


Устойчивость линейных систем автоматического управления


Годограф устойчивой системы имеет вид (рис. 3a).

Пример 5. Допустим, задан характеристический полином системы


Устойчивость линейных систем автоматического управления


Годограф устойчивой системы имеет вид (рис. 3б).


Пример 6. Допустим, задан характеристический полином системы


Устойчивость линейных систем автоматического управления


Годограф устойчивой системы имеет вид (рис. 3в).


Устойчивость линейных систем автоматического управления

Устойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управления


Устойчивость линейных систем автоматического управления


Рис. 3


Пример. Для заданной системы (рис. 4) определить условие устойчивости, частоту собственных колебаний системы и критический коэффициент усиления, т.е. коэффициент усиления, при котором система находится на границе устойчивости.

Определить устойчивость при T1 = T2 = 1 c и kv = 1 c-1.


Решение:

Определяем передаточную функцию разомкнутой системы

Устойчивость линейных систем автоматического управления


гдеУстойчивость линейных систем автоматического управления

Определяем передаточную функцию замкнутой системы


Устойчивость линейных систем автоматического управления


Запишем характеристическое уравнение


Устойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управления


Определим частоту собственных колебаний системы и критический коэффициент усиления из условия границы устойчивости


Устойчивость линейных систем автоматического управления


Откуда частота собственных колебаний системы равна:


Устойчивость линейных систем автоматического управления


Критический коэффициент усиления равен:


Устойчивость линейных систем автоматического управления

Определим устойчивость при T1 = T2 = 1 c и kv = 1 c-1.


Устойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управления


5. Строим характеристическую кривуюУстойчивость линейных систем автоматического управления(рис. 5) по данным, приведенным в таблице 1.


Устойчивость линейных систем автоматического управления

Таблица 1

w 0

Устойчивость линейных систем автоматического управления

1 Ґ
X(w) 1 0 -1

Устойчивость линейных систем автоматического управленияY(w)

0

Устойчивость линейных систем автоматического управления

0

В соответствии с критерием Михайлова, рассматриваемая система является устойчивой.


4. Частотный критерий устойчивости Найквиста


Частотный критерий устойчивости Найквиста позволяет по виду частотной характеристики разомкнутой системы судить об устойчивости замкнутой системы, т.е. он применим для замкнутых систем.

Рассмотрим функцию, которая связывает характеристики разомкнутых и замкнутых систем


Устойчивость линейных систем автоматического управления (6)

где D(p) – характеристический полином замкнутой системы;

A(p) – характеристический полином разомкнутой системы.

При этом степени полиномов A(p) и D(p) одинаковы исходя из условия физической реализуемости системы.

В соответствии со следствием из принципа аргумента


Устойчивость линейных систем автоматического управления (7)


Рассмотрим разные случаи.

Система, устойчивая в разомкнутом состоянии.

Так как разомкнутая система устойчива, то она не содержит корней в правой полуплоскости (т.е. m = 0), для того чтобы и замкнутая система была устойчива, должно выполняться условие:


Устойчивость линейных систем автоматического управления (8)


Графически это обозначает, что годограф вектора W (jw) не охватывает начала координат, а вектора K (jw) – точку с координатами (-1, j0), как показано на рис. 6. Точка с координатами (-1, j0) называется критической.


Устойчивость линейных систем автоматического управления

Устойчивость линейных систем автоматического управления


Устойчивость линейных систем автоматического управления


Рис. 6.

Система, неустойчивая в разомкнутом состоянии.

Так как разомкнутая система неустойчива, то она содержит m корней в правой полуплоскости, для того, чтобы замкнутая система была устойчивой, должно выполняться условие


Устойчивость линейных систем автоматического управления (9)


Графически это обозначает, что годограф вектора K (jw) охватывает точку с координатами (-1, j0) m/2 – раз.

Формулировка критерия Найквиста: Замкнутая система автоматического управления устойчива, если амплитудно-фазовая частотная характеристика разомкнутой, неустойчивой системы, имеющей m корней в правой полуплоскости, охватывает точку с координатами (–1, j0) m/2-раз.

Иногда по графику трудно определить охватывает ли АФХ критическую точку. В этом случае можно использовать правило переходов. Переходами называются точки пересечения АФХ отрезка оси (-Ґ.. – 1). Знак перехода определяется по следующему правилу: если фаза убывает – переход отрицательный.

Формулировка критерия Найквиста: Замкнутая система автома-тического управления устойчива, если разность положительных и отрицательных переходов равна m/2, где m – количество корней в правой полуплоскости разомкнутой неустойчивой системы, т.е.

Устойчивость линейных систем автоматического управления

(10)


Пример 8. Для заданной системы (рис. 7) определить условие устойчивости и критический коэффициент усиления.

Определить устойчивость при T1 = T2 = 1 c и kv = 1 c-1.


Решение:

1. Определяем передаточную функцию разомкнутой системы


Устойчивость линейных систем автоматического управления


2. Строим АФХ разомкнутой системы


Устойчивость линейных систем автоматического управления


При T1 = T2 = 1 c и kv = 1 c-1 АФХ разомкнутой системы имеет вид


Устойчивость линейных систем автоматического управления


Расчетные данные приведены в таблице 2, а график АФХ на рис. 8.

Устойчивость линейных систем автоматического управления

Таблица 2

w 0
1
Ґ
P(w) -2
-1/2
0
Q(w)

Устойчивость линейных систем автоматического управления0


0

Устойчивость линейных систем автоматического управления


Как видно из рисунка (8) и таблицы 2, АФХ разомкнутой системы не охватывает критическую точку, следовательно, замкнутая система, при заданной структуре и параметрах, устойчива.

Определим критический коэффициент усиления из условия:


Устойчивость линейных систем автоматического управления


Устойчивость линейных систем автоматического управления


5. Определение областей устойчивости


Устойчивость систем зависит от структуры и параметров системы. При расчете систем автоматического управления возникает задача опреде-ления диапазона изменения варьируемых параметров системы, при кото-рых она устойчива.

Область устойчивости – это совокупность значений параметров системы, при которых она устойчива.

Коэффициенты характеристического уравнения являются функциями от параметров системы, и они определяют расположение корней в комплексной плоскости, при изменении параметров корни перемещаются в комплексной плоскости и система может стать не устойчивой.

Для определения областей устойчивости можно использовать различные методы, наиболее часто используют метод D – разбиения. D-разбиение может быть выполнено по одному и более параметрам.

Рассмотрим алгоритм определения областей устойчивости с помощью метода D – разбиения по одному параметру на конкретных примерах.

Пример 9. Определить область возможных значений параметра «к», при которых заданная система (рис. 9) устойчива


Порядок определения областей устойчивости

Определяем передаточную функцию замкнутой системы


Устойчивость линейных систем автоматического управления


Устойчивость линейных систем автоматического управления


Определяем характеристический полином

Разрешим уравнение относительно параметра – к


Устойчивость линейных систем автоматического управления


Строим кривую D – разбиения (см. таблицу 3 и рис. 10)


Устойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управленияУстойчивость линейных систем автоматического управления

Таблица 3

w 0 1 Ц2 2 Ґ
X(w) 0 1 2 4 Ґ
Y(w) 0 -1 0 4 Ґ

Устойчивость линейных систем автоматического управления

Устойчивость линейных систем автоматического управления


Так как параметр является вещественной положительной величиной, то областью устойчивости являются значения параметра – к, расположенные на вещественной положительной оси, т.е.] 0, 2 [, что может быть провере-но по критерию Гурвица.


Литература


Бронштейн И.Н., Семендяев К.Н. Справочник по математике для инженеров и учащихся вузов. – М.: Наука, 1986.

Брюханов В.Н. и др. Теория автоматического управления. – М: Высшая школа, 2000.

Егупов Н.Д., Пупков К.А., Баркин А.И. Синтез регуляторов систем автоматического управления. МГТУ им. Н.Э. Баумана, 2004.

Ким Д.П., Дмитриева Н.Д. Сборник задач по теории автоматического управления. Линейные системы. ФИЗМАТЛИТ, 2007. – 168 с.

Лукас В.А. Теория автоматического управления. – М.: Недра, 1990. – 416 с.

Сборник задач по теории автоматического регулирования и управления/ Под редакцией В.А. Бесекерского. – M.: Наука, 1978.

Справочник по теории автоматического управления. /Под ред. А.А. Красовского – М.: Наука, 198 – 712 с.

Похожие работы:

  1. • Автоматизированный электропривод
  2. • Системы автоматического управления
  3. • Системы автоматического управления
  4. • Анализ систем автоматического управления
  5. • Принципы построения систем автоматического ...
  6. • Устойчивость систем автоматического управления
  7. • Автоматические системы управления
  8. • Характеристика дискретных систем автоматического управления
  9. • Устойчивость линейных систем
  10. • Характеристики систем автоматического управления
  11. • Анализ динамических свойств системы автоматического ...
  12. • Критерии устойчивости линейных систем
  13. • Критерии устойчивости линейных систем
  14. • Расчет системы автоматического управления
  15. • Теория автоматического управления
  16. • Линейные автоматические системы регулирования
  17. • Многоконтурная система автоматического управления ...
  18. • Разработка системы автоматического контроля ...
  19. • Синтез частотных характеристик линейных систем ...
Смотреть все похожие работы
Рефетека ру refoteka@gmail.com