Рефотека.ру / Коммуникации и связь

Дипломная работа: Интеграция локальных вычислительных сетей МИЭТ и студенческого городка МИЭТ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РФ ПО ВЫСШЕМУ ОБРАЗОВАНИЮ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ЭЛЕКТРОННОЙ ТЕХНИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ МПИТК

КАФЕДРА ВТ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К ДИПЛОМНОМУ ПРОЕКТУ НА ТЕМУ «ИНТЕГРАЦИЯ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ МИЭТ И СТУДЕНЧЕСКОГО ГОРОДКА МИЭТ»

Дипломант Абрамец М.Б

Руководитель проекта Лупин С.А

Консультант по Специальному разделу

Лупин С.А

Консультант по Технологическому разделу

Грушевский А.М.

Консультант по Организационно-Экономическому разделу

 Дьячкова Н.Н

Консультант по Производственной и Экологической Безопасности

Никулина И.М

Москва


СОДЕРЖАНИЕ

Введение

Часть I

Специальный раздел

ЛВС Студенческого городка МИЭТ      

История создания        

Структура и технологии сети

Кабельная система

Инфраструктура сети

Информационная составляющая

Связь с сетью Internet

ЛВС МИЭТ

Структура и технологии

Связь с сетью Internet

Варианты реализации физического канала

Связь через сеть Internet

Аренда выделенного цифрового канала

Создание волоконно-оптической магистрали МИЭТ - Cтудгородок

Обзор волоконно-оптических технологий

Оборудование и материалы, необходимые для реализации физической связи интегрируемых сетей посредством волоконно-оптической магистрали

Организация радиоканала

Обзор технологий и классификация оборудования радиосетей

Анализ целесообразности реализации связи ЛВС МИЭТ и Студгородка МИЭТ посредством радиоканала

Необходимое оборудование

Выбор активного оборудования и его обоснование

Характеристики радиоканала        

Заключение

Обеспечение информационной безопасности сетей

Преспективы проекта

Заключение        

Литература        

Часть II

Технологический раздел

Введение

Содержание и представление информационных ресурсов электронной библиотеки

Процесс наполнения электронной библиотеки

Выводы

Литература        

Часть III

Организационно-экономический раздел

Введение

Расчет постатейных прямых затрат при различных вариантах интеграции сетей

Связь посредством сети Internet

Аренда выделенного канала

Создание оптоволоконной магистрали

Расчет основных прямых затрат на реализацию проекта

Организация радиоканала

Расчет основных прямых затрат на реализацию проекта

Прогнозная оценка реализации различных вариантов связи ЛВС МИЭТ и студгородка МИЭТ

Выводы

Литература        

Часть IV

Производственная и экологическая безопасность

Введение

ТРЕБОВАНИЯ К ПомещениЮ при эксплуатации ПЭВМ

Организация рабочего места

Требования к вентиляции и кондиционированию воздуха

Требования к уровням шума и вибрациям

Электроопасность и пожароопасность

Требования к защите от статического электричества и излучений при работе за компьютером

Требования к естественному и искусственному освещению        

Расчет искусственного освещения помещения компьютерного зала

Психофизиологические факторы

Выводы

Литература        


ВВЕДЕНИЕ

В настоящее время, когда информационные технологии заняли достаточно прочные позиции практически во всех сферах жизнедеятельности человека, и продолжают их укреплять, стало очень популярным понятие системной интеграции.

Сегодня, для эффективного решения ряда производственных и иных задач, уже не достаточно просто иметь большой парк компьютеров, необходимо создавать на их базе целостную структуру, обеспечивающую взаимодействие вычислительных систем, и их отдельных компонентов. Организации всего мира, от крупнейших корпораций до небольших компаний, постоянно развивают и совершенствуют свои вычислительные сети, внедряют новые достижения в области информационных технологий в производственные и иные процессы.

Системы поддержки принятия решений, системы документооборота, системы управления базами данных – все это технологии на порядок увеличивающие эффективность работы любой организации, однако все они практически бесполезны, если вычислительные ресурсы компании не объединены в единую корпоративную сеть. Именно поэтому ежегодно на развитие корпоративных сетей и систем связи во всем мире выделяются колоссальные деньги!

Трудно переоценить значимость информационных технологий и для таких областей как наука и образование. Сегодня компьютер является уже не предметом изучения, а средством, способствующим учебному процессу. Последнее время стали активно развиваться такие проекты как «дистанционное обучение», появилось множество электронных библиотек, банков данных, специализированных электронных учебников. Компьютерные сети позволяют совместно использовать имеющиеся вычислительные мощности для распределенного решения сложных задач, так называемое разделение процессорных ресурсов.

В рамках социально-образовательных программ в высших учебных заведениях создаются мощные информационные системы, способствующие учебному процессу, проведению совместных исследований, и оперативному обмену информацией между студентами и преподавателями. Очень распространенными стали так называемые «кампусные» сети – компьютерные сети, объединяющие рабочие станции студентов с общими сетями института.

Не секрет, что развитие подобного рода проектов в России весьма затруднительно, ввиду отсутствия финансирования, поскольку создание сети масштаба студенческого городка является задачей достаточно серьезной, и требует ощутимых финансовых и временных затрат. Поэтому в нашей стране, как правило, кампусные сети создаются и поддерживаются самими студентами. Интеграция же этих сетей с сетями соответствующих учебных заведений происходит далеко не всегда, но как показывает практика, такое объединение очень полезно.

На территории студгородка МИЭТ с 1994 года существует локальная сеть, которая в настоящее время охватывает 60% всех комнат общежития, и имеет достаточно развитую инфраструктуру. Последние три года, когда появился смысл рассматривать ЛВС студгородка как потенциальное подразделение в рамках сети МИЭТ, несколько раз безуспешно предпринимались попытки объединить сеть студгородка с сетью института. Как правило, основные сложности заключались в территориальной удаленности института и студгородка, и в вопросах обеспечения безопасности сети института.

Цель данной дипломной работы – попытаться разработать вариант интеграции локальных вычислительных сетей МИЭТ и студгородка МИЭТ, удовлетворяющий обе стороны.

На рисунке ниже, представлено обоснование необходимости реализации проекта интеграции для института.


Цель интеграции сетей МИЭТ и студгородка МИЭТ


Основной идеей является то, что интеграция сетей должна протекать поэтапно. То есть первоначально достаточно реализовать доступ из сети студгородка к некоторому серверу, располагающемуся в пределах сети МИЭТ, по протоколам FTP и HTTP. Таким образом, этот сервер будет являться общим информационным пространством (пересечением ЛВС) МИЭТ и студгородка МИЭТ. В ходе развития общих информационных проектов, можно будет расширить информационное пространство. В перспективе можно реализовать аутентификацию пользователей, запрашивающих доступ к ресурсам сети МИЭТ.

Для того чтобы реализовать проект интеграции необходимо представлять себе структуры локальных вычислительных сетей МИЭТ и студенческого городка МИЭТ, а так же принципы их функционирования, и используемые технологии.

Кроме того, необходимо выбрать из возможных вариантов интеграции наиболее удовлетворяющий следующим критериям:

-                     Минимизация затрат на техническую реализацию

-                     Минимизация сроков реализации

-                     Обеспечение информационной безопасности сетей

Для этого необходимо произвести достаточно глубокий анализ потенциальных вариантов интеграции, выявить присущие им достоинства и недостатки, и оперируя этой информацией произвести выбор варианта реализации и его обоснование.


ЧАСТЬ I

СПЕЦИАЛЬНЫЙ РАЗДЕЛ

ИНТЕГРАЦИЯ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ МИЭТ И СТУДЕНЧЕСКОГО ГОРОДКА МИЭТ

КОНСУЛЬТАНТ ЛУПИН С.А.

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

ЛВС СТУДЕНЧЕСКОГО ГОРОДКА МИЭТ

История создания

Локальная вычислительная сеть студенческого городка МИЭТ существует с 1994 года. Сеть образовалась, поддерживается и развивается исключительно благодаря усилиям студентов, проживающих в студенческом городке. Цель объединения домашних компьютеров в локальную сеть имеет социально-образовательный характер. То есть для студентов сеть является средством интерактивного взаимодействия, общения, частью досуга, а так же используется в образовательных целях и при совместном решении различных задач.


Рис.1-1. Динамика расширения ЛВС Студгородка МИЭТ

За 7 лет существования ЛВС претерпела множество качественных изменений. На данный момент она территориально охватывает все 5 корпусов студенческого городка МИЭТ, а число рабочих станций, подключенных к ней, растет с каждым днем все больше и больше, и на начало 2001 года превысило 430 штук. Динамику расширения сети можно видеть на приведенной диаграмме.

Сеть постоянно развивается и модернизируется с учетом появления новых сетевых и информационных технологий, а также с учетом потребностей и возможностей пользователей, входящих в сетевое сообщество.

Администрированием и развитием сети занимается группа студентов, избранных сетевым сообществом на основании профессиональной пригодности и желания поддерживать функциональность и совершенствовать инфраструктуру сети, а также повышать уровень собственной квалификации в области сетевых технологий. В каждом корпусе есть сетевой администратор, который обеспечивает работоспособность вверенного ему участка сети в соответствии с общепринятым уставом.

Структура и технологии сети

ЛВС студенческого городка МИЭТ полностью построена на технологии SWITCHED ETHERNET и поддерживает стандарты 10Base-T и 100Base-T. Маршрутизация внутри сети не реализована, таким образом сеть представляет собой один широковещательный домен.

Сеть имеет тип топологии иерархическая звезда, то есть существует центральный коммутатор, который связывает между собой корпусные коммутаторы и несколько серверов.

Связь между коммутаторами реализована по технологии 100Base-T, имеет скорость передачи данных 100 мегабит в секунду в полнодуплексном режиме, обеспечивая тем самым пропускную способность 200 Мбит/с.

Структурная схема топологии ЛВС студгородка МИЭТ приведена на рисунке.


Рис.2. Структурная схема ЛВС студгородка МИЭТ


К каждому корпусному коммутатору подключено от четырех до семи концентраторов (имеющих 8 или 16 портов), обеспечивающих связь с рабочими станциями по технологии 10Base-T со скоростью передачи данных 10 Мбит/с в полудуплексном режиме. Каждый из концентраторов образует отдельный сегмент сети, работающий по технологии Ethernet 10Base-T. Таким образом, сеть разбивается коммутаторами на коллизийные домены, в каждом из которых содержится не более 15 рабочих станций, что несомненно способствует рациональному использованию полосы пропускания, и минимизирует возможность возникновения коллизий. Кроме того, пропускная способность магистрали, к которой подключены коммутаторы (100 Мбит/с) равномерно распределяется между коллизийными сегментами, что позволяет добиться оптимальной производительности с учетом имеющегося оборудования и технологий.

 

Кабельная система

Кабельная система реализована с учетом базовых стандартов СКС (стандартов телекоммуникационной инфраструктуры коммерческих зданий ISO/IEC 11801, EN 50173 и ANSI/TIA/EIA-568-A).

Кабельная система полностью построена с использованием симметричного 4-парного медного кабеля («неэкранированная витая пара» или UTP) категории 5 фирмы Alcatel (с недавнего времени Nexans, www.nexans.com).

Магистральная подсистема кампуса (магистраль между корпусами) проходит «по воздуху», то есть крепится на специально смонтированных, и натянутых между крышами корпусов гибких тросах-растяжках. Такой тип соединения распределительных пунктов корпусов с главным распределительным пунктом комплекса продиктован в первую очередь расстояниями между корпусами, которое составляет 60-70 метров. С учетом ограничения спецификацией 5 категории длины линии связи между двумя активными устройствами (100 метров) прокладывать магистраль комплекса, используя медный кабель, внутри здания было нецелесообразно. Тем не менее, даже при таком способе прокладки магистралей, их длины превышают стометровый предел.

Однако, стандарты ISO/IEC 11801 и EN 50173 допускают наличие в СКС линий увеличенной длины. Такие линии рекомендуется тестировать на соответствие параметров, определенных для стандартных линий. Данное положение международного и европейского стандарта подразумевает возможность выбора более качественной среды передачи и использования резерва параметров для увеличения длины каналов.

Межкорпусные магистрали имеют 2 важные особенности, которыми обуславливается их нормальное функционирование, и нормальное взаимодействие подключенных к ним коммутаторов по технологии 100Base-T:

1.       Поскольку передача информации по магистрали происходит в полнодуплексном режиме, то отсутствует понятие коллизии, и связанного с ним значения задержки сигнала при прохождении по линии связи (PVDPath Delay Value), которое является одним из параметров, ограничивающих длину канала.

2.       Характеристики кабеля имеют некоторый запас по затуханию сигнала, что позволяет увеличить длину линии связи на 20-30 метров без потери качества связи.

Таким образом, межкорпусные магистрали соответствуют международному (ISO/IEC 11801) и европейскому (EN 50173) стандартам СКС.

Магистральная подсистема корпуса (или вертикальная подсистема), проходит по коммуникационным стоякам, предусмотренным конструкцией зданий (корпусов общежития), и соединяет распределительный пункт здания (помещение, где располагается корпусной коммутатор) с распределительными пунктами этажей, число которых на каждом этаже достигает четырех.

Горизонтальная подсистема СКС. Прокладка кабелей осуществляется по специальным кабельным каналам (коробам) смонтированным на высоте 2 метра от пола вдоль всех коридоров корпусов. Механические окончания кабелей горизонтальной подсистемы (разъемы и розетки RJ-45) выполнены в соответствии с требованиями 5й категории.


Рис.3. Активное оборудование и магистрали ЛВС студгородка МИЭТ

На рис.3 показано территориальное расположение активного сетевого оборудования, а так же изображены межкорпусные магистрали, и элементы вертикальной подсистемы СКС. Распределительный пункт (РП) кампуса, где установлен центральный коммутатор магистрали, располагается в 4 корпусе. Так же во всех корпусах существует РП корпуса, где располагаются корпусные коммутаторы, которые в свою очередь связаны вертикальной подсистемой СКС с РП этажей.

Стоит также отметить, что кабельная система реализована с учетом ограничений, накладываемых технологией Fast Ethernet, касающихся максимального диаметра коллизийного домена 205 метров. В сети полностью отсутствуют каскадируемые концентраторы, длины «лучей» в конечных сегментах не превышают 50 метров (хотя спецификация кабельной системы 5 категории ограничивает длину луча звезды 90 метрами).

Таким образом, ЛВС студенческого городка МИЭТ спроектирована с учетом перспектив внедрения новых технологий и масштабирования.

Для того чтобы полностью перевести всю сеть на высокоскоростную технологию Fast Ethernet (100Base-T), достаточно просто заменить активное оборудование в локальных сегментах: концентраторы и сетевые адаптеры, стоимость которых постоянно падает, и приближается к стоимости оборудования, работающего по технологии 10Base-T.

Инфраструктура сети

ЛВС студенческого городка МИЭТ имеет достаточно развитую инфраструктуру, и представляет собой, по сути, корпоративную сеть среднего масштаба.

Приведем некоторые данные по аппаратной части инфраструктуры сети:


Таблица 1. Статистика по аппаратной части ЛВС студгородка МИЭТ

В следующей таблице представлено распределение активного сетевого оборудования и рабочих станций по корпусам, а так же число комнат, «охваченных» сетью:

Таблица 2.Статистика по корпусам

Как видно из таблицы 2, число комнат, имеющих одну или более точек подключения, составляет 35-70% от общего числа жилых комнат (в зависимости то корпуса). Таким образом, учитывая тенденцию компьютерных технологий становиться с каждым годом все доступнее, а так же динамику развития сетевых технологий, можно с большой вероятностью предположить, что через год-два компьютерная сеть будет охватывать 99% всей территории (всех комнат) студенческого городка.

На рисунках ниже обозначены все рабочие станции, подключенные к ЛВС студенческого городка МИЭТ на май 2001 года во всех корпусах студгородка.

Рис.4. Расположение рабочих станций в корпусе №2


Рис.5. Расположение рабочих станций в корпусе №3


Рис.6. Расположение рабочих станций в корпусе №4


Рис.7. Расположение рабочих станций в корпусе №5


Рис.8. Расположение рабочих станций в корпусе №6


Информационная составляющая

В сети существует 4 выделенных сервера, каждый из которых выполняет ряд полезных функций в масштабе всей сети. В таблице 3 приводятся данные о серверах:

Таблица 3. Описание функциональности выделенных серверов

Файловые серверы содержат большое количество программ, средств разработки и документации, доступным всем пользователям сети. Содержимое серверов постоянно пополняется и обновляется по мере появления новых версий полезных информационных ресурсов.

Помимо этого большое число пользователей сети организовывают на своих рабочих станциях WEB серверы, содержащие набор страничек различной тематики. Создаются различные форумы, доски объявлений, прочие ресурсы, улучшающие уровень взаимодействия пользователей сети, и удовлетворяющие их определенные интересы.

Сеть абсолютно прозрачна для пользователей в плане совместного использования ресурсов, что является особенно ценным. Учитывая, что число рабочих станций в сети превышает 430, и многие предоставляют доступ к различным информационным ресурсам, а так же, приняв во внимание тот факт, что средний размер жесткого диска превышает на сегодняшний день 10GB, то примерный объем информационного пространства ЛВС студгородка МИЭТ превышает 4 Терабайта (примерно 4,200,000 Мегабайт).

Связь с сетью Internet

Связь ЛВС студенческого городка МИЭТ с глобальной компьютерной сетью Internet, осуществляется посредством местного поставщика услуг Internet (провайдера), представляющего собой коммерческую структуру.

Оборудование провайдера расположено в 4 корпусе общежития, и подключено непосредственно к центральному коммутатору кампуса, как показано на рисунке 1.

Внутреннее пространство IP-адресов ЛВС студгородка МИЭТ лежит в диапазоне 172.16.0.0-172.16.255.255. Адреса из данного диапазона динамически распределяет DHCP сервер между рабочими станциями. Существует так же пространство внутренних статических адресов, которое находится внутри приведенного выше диапазона. Соответствие статических адресов конкретным рабочим станциям содержится в специальных таблицах DNS и DHCP серверов.

Поскольку пространство IP-адресов является специально выделенным для адресации в локальных сетях, то есть не является пространством уникальных адресов в сети Internet, то для осуществления связи рабочих станций сети с узлами сети Internet на шлюзе работает специальная служба NAT (Network Address Translation). Инициировать соединение внутреннего узла ЛВС студгородка с узлом в сети Internet можно только со стороны ЛВС студгородка, ввиду алгоритма реализации службы NAT. При этом IP-адрес всех узлов ЛВС внутренней сети студгородка для удаленных компьютеров в сети Internet имеет одно и то же значение – адрес шлюза в сеть студгородка.

Оплата связи с сетью Internet осуществляется из расчета переданного через шлюз (в обоих направлениях) объема информации. За 1 мегабайт установлена оплата 0.15 долларов США, что в принципа достаточно дорого. Поэтому из всех сервисов, предоставляемых в сети Internet, наиболее активно используются ICQ, почтовые сервисы (IMAP, POP3, SMTP), и Web (HTTP).

 

Структура и технологии

Локальная вычислительная сеть МИЭТ представляет собой, по сути, множество связанных между собой локальных сетей различных структурных подразделений университета. Как правило, все сети работают по технологии Ethernet (10Base-T, 10Base-2) или Fast Ethernet (100Base-TX, 100Base-FX).

Магистральный канал университета, соединяющий все корпуса с главным коммутационным узлом сети (с центральным маршрутизатором), выполнен с использованием оптоволоконного кабеля, позволяющего создавать сегменты большой длины, и работает по технологии 100Base-FX.

В каждом корпусе расположен один или несколько коммутаторов, подключенных к центральной сетевой магистрали университета. Коммутаторы обеспечивают связь подсетей отдельных структурных подразделений университета со всей сетью.

Рис.9. Структурная схема ЛВС МИЭТ

Существует ряд серверов, общих для всей локальной вычислительной сети МИЭТ (рис.9). Правила доступа и работы с такими серверами регулируются администраторами ЛВС МИЭТ.

Каждое подразделение имеет выделенное ему пространство статических IP-адресов. Большинство подразделений МИЭТ соединяются с общей магистралью института через свои шлюзы, на которых, как правило, регулируются правила двунаправленного прохождения пакетов IP протокола в зависимости от принятой подразделением политики безопасности и существующих маршрутов. То есть шлюз выполняет роль маршрутизатора и брэндмауэра.

Таким образом, каждое подразделение университета определяет в частном порядке уровень и условия доступа к внутренним ресурсам своей подсети.

На рисунке 10 изображена схема типичной сети структурного подразделения МИЭТ и ее основные элементы:

Рис.10. Структура типичной сети подразделения

Сегменты, как правило, имеют топологию «звезда», «шина» или смешанную. На рисунке 11 изображены типичные сегменты сети подразделения:


Рис.11. Типичные сегменты сети подразделения

Связь с сетью Internet

Большинство подразделений МИЭТ используют главный шлюз (на рис.9 - Main Gateway) для осуществления связи с узлами глобальной сети Internet. На шлюзе работает специализированное программное обеспечение, выполняющее фильтрацию входящего и исходящего трафика по ряду различных признаков с учетом принятых системным администратором правил политики безопасности.

Так же существует ряд подразделений института, которые имеют свой собственный Internet-канал. Такие подразделения, как правило, имеют возможность выхода в Internet несколькими путями, в зависимости от принятых настроек на местном маршрутизаторе, и локальных станциях подразделений.

 

Варианты реализации физического канала

Существует множество потенциальных вариантов реализации физического канала между локальными сетями МИЭТ и студенческого городка МИЭТ.

Рассмотрим наиболее подходящие с точки зрения практической реализации варианты обеспечения физической связи интегрируемых сетей.


СВЯЗЬ ЧЕРЕЗ СЕТЬ INTERNET

Учитывая тот факт, что обе интегрируемые сети имеют выход в глобальную компьютерную сеть Internet - можно сказать, что физический канал уже создан. То есть связь между ЛВС МИЭТ и ЛВС студгородка МИЭТ можно осуществить, используя каналы сети Internet.

Рис.12. Интеграция ЛВС МИЭТ и студгородка МИЭТ посредством сети Internet

При этом в качестве общего информационного пространства можно использовать информационное пространство официального сервера МИЭТ, предоставляющего сервисы WWW (www.miee.ru) и FTP (ftp.miee.ru), тем самым исключив необходимость изменять параметры политики безопасности обоих сетей, а так же устанавливать дополнительное активное оборудование.

Этот вариант имеет ряд как положительных и отрицательных моментов, перечисленных в таблице 4.

Достоинства Недостатки

·         Связь существует: не требуется проведение дополнительных работ по построению физического канала

·         Не требуется изменение политик безопасности сетей

·         Равные условия доступа к ресурсам сети МИЭТ из любой точки, имеющей связь с Internet

·         Высокая стоимость связи: необходимо ежемесячно оплачивать услуги сети Internet

·         Низкая скорость передачи данных: «ширина» Internet-канала, предоставляемого пользователям ЛВС студгородка МИЭТ 128Кбит/с

·         Низкое качество связи: качество связи зависит от множества субъективных факторов, таких как программно-аппаратные проблемы на промежуточных узлах связи

·         Низкая безопасность передаваемой информации из-за большого количества промежуточных узлов

Похожие работы:

  1. • Локальная вычислительная сеть городка
  2. • Интранет сети
  3. • Способ организации упрощенного доступа к ...
  4. • Разработка программы приема и передачи сообщений в ...
  5. • Коммуникации в организации
  6. • Рекомендации менеджерам, принимающим плановые решения
  7. • Коммуникационные барьеры
  8. • Инновационная инфраструктура и ее развитие
  9. • Системы автоматического управления
  10. • Клиентская часть технологической среды для ...
  11. • Управление финансовым обеспечением воспроизводственного ...
  12. • Программное обеспечение удалённого доступа к технической ...
  13. • Контроль динамических параметров ЦАП
  14. • Подсистема визуального отображения процесса ...
  15. • Кадровое обеспечение муниципального управления
  16. • Проблемы теории нематериальных объектов: гражданско-правовой ...
  17. • Спиртовая мафия
  18. • Электронные компоненты
  19. • ПОСТРОЕНИЕ VERILOG-МОДЕЛИ BER-ТЕСТЕРА ДЛЯ ПРОВЕРКИ КАНАЛОВ ...