Рефетека.ру / Математика

Дипломная работа: Живая геометрия

 

 

 

 

 

 

 

 

 

 

ЖИВАЯ ГЕОМЕТРИЯ


Оглавление

Введение

Глава 1. Теоретические изложения

1.1 Краткий анализ литературы

1.2 Описание геометрических законов

1.3 Сущность геометрических построений

Глава 2. Из истории

2.1 О сравнении природных явлений с геометрическими законами

2.2 Открытие некоторых геометрических построений

Глава 3. Практическая часть

3.1 Сущность графического образования, и его место в современном мире

3.2 Выбор практических заданий

3.4 Содержание практической работы

Заключение

Литература


Введение

Почему наш мир прекрасен? Почему формы и цвета живой природы не во всем соответствуют принципу биологической целесообразности, но во многом следуют общим закономерностям гармонии, выявляющимся путем строгого математического анализа? В свое время создатель теории эволюции — Чарльз Дарвин — предположил, что случайно появляющиеся в живой природе эстетические закономерности привлекают особей другого пола и закрепляются в последующих поколениях. При изучении природы мы находим в ней все больше эстетических признаков, которые выявляются, как правило, не сразу, но после детального математического анализа.

Исследования последних лет показали, что эстетически воспринимаемые формы живой природы большей частью связаны с неевклидовой симметрией, выявляемой, опять-таки, лишь после тщательного математического анализа. То же самое можно сказать и относительно пения птиц, совершенство форм которого можно оценить лишь после применения специальной записывающей аппаратуры. Другими словами — эстетически правильные формы являются гораздо более распространенными в природе, чем это может показаться на первый взгляд.

При использовании законов геометрии природы в новой ситуации, для изучения курсов предметов, связанных с геометрическими построениями, мы повышаем общую мотивацию к учению. В результате учащиеся заново переосмысливают изученные геометрические законы, развивают геометрическую интуицию.

Кроме того, в процессе выполнения творческих заданий различного содержания, ребята знакомятся с возможными сферами применения геометрических знаний (художниками, архитекторами, дизайнерами и т.д.). Это служит повышению интереса к предмету и осознанному выбору профиля обучения в старшей школе, а опыт и знания, приобретенные в процессе изучения компьютеризированного курса, расширяют геометрические представления учащихся и помогут при дальнейшем их обучении.

Целью нашей работы является изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности.

Для достижения этой цели следует решить ряд задач:

·                   Изучить теоретические источники по проблеме;

·                   Ознакомиться с сущностью геометрических законов и основанных на них построениях;

·                   Рассмотреть исторические аспекты геометрических законов и построений;

·                   Изучить практическое преломление данной темы;

·                   Проанализировать полученные сведения, дать рекомендации по практическому использованию «живой геометрии».

В данной работе используются следующие методы: анализ теоретических источников и разработка практических упражнений.

Объектом исследования является геометрия в живом мире.

Предметом изучения являются способы геометрических построений, соотносимые с геометрией в живом мире.

Гипотеза исследования такова: при создании специальных условий обучения с использованием «живой геометрии» наблюдается положительная динамика в мотивационной сфере школьников, в отношении к занятиям черчением и геометрическими построениями.


ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ИЗЛОЖЕНИЯ

1.1 Краткий анализ литературы

«Многие народы с древнейших времен владели представлением о симметрии в широком смысле — как эквиваленте уравновешенности и гармонии. В геометрических орнаментах всех веков запечатлены неиссякаемая фантазия и изобретательность художников и мастеров, чье творчество было ограничено жесткими рамками, установленными неукоснительным следованием принципам симметрии. Трактуемые несравненно шире идеи симметрии нередко можно обнаружить в живописи, скульптуре, музыке и поэзии. Операции симметрии часто служат канонами, которым подчиняются балетные па: симметричные движения составляют основу танца... Формы восприятия и выражения во многих областях науки и искусства, в конечном счете, опираются на симметрию, используемую и проявляющуюся в специфических понятиях и средствах, присущих отдельным областям науки или видам искусства. Помимо специализированных приложений принципы симметрии могут служить также для унификации и объединения обширного круга знаний» [30].

«Изучая внешнюю форму и строение кристаллов, законы механического движения, природу физических полей, элементарные частицы и их квантовомеханическое поведение, законы сохранения, строение растений, животных и человека, математические абстракции, реалии предметного быта, архитектуру, скульптуру, живопись, поэзию и музыку, человек везде стремился найти и находил упорядоченность, гармонию, пропорциональность, соразмерность, то, что он, в конце концов, обозначил одним понятием — симметрия. В это емкое понятие включаются и закономерное расположение в пространстве одинаковых материальных объектов, и упорядоченное изменение во времени различных звуков, и математические законы, и строго определенные изменения физических состояний и свойств частиц и полей» [27].

Приведенные высказывания подчеркивают необычайную широту применения понятия симметрии, его многоликость и всеобщность. Какие бы сферы человеческой деятельности (будь то наука или искусство) мы ни рассматривали, везде обнаруживается симметрия. Нет, пожалуй, таких сфер деятельности, где понятие симметрии не применялось бы.

Из сказанного выше следует, что симметрия является глобальным понятием. Естественно возникает вопрос о том, как может выглядеть глобальное (самое общее) определение данного понятия. Такое определение почти автоматически возникает, если мы обратимся к диалектическим категориям «изменение» и «сохранение». Почему эти категории называются диалектическими? Дело в том, что понятие сохранения оказалось бы попросту ненужным, если бы в мире вдруг исчезли изменения. Точно так же понятие изменения имеет смысл лишь постольку, поскольку можно наблюдать сохранение. Указанные понятия противоположны, но при этом имеют смысл лишь в сопоставлении друг с другом. Как принято говорить, они едины в своей противоположности. Именно в этом смысле мы говорим об их диалектическом единстве. Поставим вопрос: через какое понятие выражается диалектическое единство изменения и сохранения? Отвечаем: таким понятием как раз и является понятие симметрии, рассматриваемое в самом общем плане [29].

Итак, с общей точки зрения, симметрия есть понятие, выражающее диалектическое единство изменения и сохранения. Как отмечал Р. Фейнман, симметричным следует считать такой объект, «который можно как-то изменять, получая в результате то же, с чего начали» [25].

По выражению Н. Ф. Овчинникова, «единство сохранения и изменения — вот краткая формула симметрии, выявляющаяся на абстрактно-теоретическом уровне».

Можно говорить о следующей структуре понятия симметрии [9]:

• есть объект, симметрия которого рассматривается (это может быть не только материальный объект, но также изображение, текст, нотное письмо, физическое или какое-либо иное явление, например танец);

• есть изменение (преобразование), по отношению к которому рассматривается симметрия;

• есть сохранение (неизменность) объекта или отдельных его свойств или сторон, которое и выражает рассматриваемую симметрию.

Коротко говоря, симметрия заключается в сохранении чего-то при каких-то изменениях. С симметрией мы встречаемся всякий раз, когда при каких-то изменениях что-то сохраняется. В этом смысле понятие симметрии оказывается, по сути дела, тождественным понятию инвариантности.

Уместно напомнить, что древние греки отождествляли симметрию с гармонией и что, по Пифагору, «гармония есть то, что приводит противоположности к единству». Правда, Пифагор не уточнял, о каких противоположностях идет речь. Судя по всему, он не собирался ограничиваться диалектическим единством изменения и сохранения, что и предопределяло нечеткость и расплывчатость понятия симметрии (как и понятия гармонии) [15;31].

Следуя идеям Ю. Вигнера, которые были изложены им в работах «Симметрия и законы сохранения» и «Роль принципов инвариантности в натуральной философии», выделим три уровня научного познания. Первый уровень (наиболее простой) — это уровень явлений (физических, химических, биологических и др.). Процесс познания начинается с данного уровня, т.е. с изучения и сопоставления разнообразных явлений, происходящих в окружающем нас мире. Это изучение позволяет обнаружить существование между различными явлениями тех или иных взаимосвязей, которые как раз и представляются нами как законы природы. Выявляя их, исследователь переходит на второй уровень познания — уровень законов природы. Анализ законов природы позволяет осуществить затем переход на третий уровень — уровень принципов симметрии (принципов инвариантности) [10].

Вигнер отмечал: «С весьма абстрактной точки зрения существует глубокая аналогия между отношением законов природы к явлениям, с одной стороны, и отношением принципов симметрии к законам природы — с другой... Функция, которую несут принципы симметрии, состоит в наделении структурой законов природы или установлении между ними внутренней связи, так же как законы природы устанавливают структуру или взаимосвязь в мире явлений... Законы природы позволяют нам предвидеть одни явления на основе того, что мы знаем о других явлениях; принципы инвариантности должны позволять нам устанавливать новые корреляции между явлениями на основании уже установленных корреляций между ними» [9].

Как подчеркивал Вигнер, мы просто были бы не в состоянии формулировать законы природы, если бы корреляции (взаимосвязи) между событиями (явлениями) не были инвариантными по отношению к пространственно-временным преобразованиям. Он писал: «Законы природы не могли бы существовать без принципов инвариантности. Если бы корреляции между событиями менялись день ото дня и были бы различными для разных точек пространства, то открывать законы природы было бы невозможно. Таким образом, инвариантность законов природы относительно сдвигов в пространстве и времени служит необходимой предпосылкой того, что мы можем открывать корреляции между событиями, т. е. законы природы» [10].

Вигнер говорил об определенной иерархии нашего знания об окружающем мире, имея в виду «переход с одной ступени на другую, более высокую — от явлений к законам природы, от законов природы к симметрии, или принципам инвариантности» [10].

Итак, глобальность понятия симметрии объясняется тем, что в иерархической лестнице познания симметрия представляет самую высокую ступень, характеризующуюся наибольшей степенью обобщения. В чем проявляется эта наибольшая степень обобщения? Выделим три момента [5]:

1) Симметрия помогает выделить в нашем столь изменчивом и динамичном мире различные инварианты (сохраняющиеся величины, определенные закономерности, своеобразные «опорные точки»);

2) Симметрия позволяет найти и выделить общее в многообразии наблюдаемых объектов и явлений;

3) Симметрия ограничивает число возможных структур и возможных вариантов поведения систем.

Возвращаясь еще раз к Вигнеру, отметим, что ученый указывал на двоякую роль принципов симметрии в научном познании [10].

Во-первых, они играют роль пробного камня при проверке справедливости тех или иных законов природы, степени их общности.

Во-вторых, принципы симметрии позволяют в ряде случаев непосредственно открывать новые законы, иначе говоря, предсказывать неизвестные ранее корреляции между явлениями.

Понятие симметрии проходит фактически через всю многовековую историю человечества, постепенно углубляясь. Оно обнаруживается уже у истоков человеческого знания; его широко и эффективно используют все без исключения направления современной науки. Закономерности, обнаруживаемые в неисчерпаемой в своем многообразии картине природных явлений, подчиняются принципам симметрии. Эти принципы играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке [25].

Но существует еще понятие фрактальной геометрии (геометрии неправильных форм).


image050.jpg

Подпись: Рисунок 1. Фрактальное дерево, смоделированное на компьютере.

То, как определил фракталы Бенуа Мандельброт, который первый сформулировал определение фрактала, довольно точно описывает его: «Почему геометрию часто называют холодной и сухой? Одна из причин в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, берега - не окружности и кора дерева не является гладкой, и молния не движется по прямой.... Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Набор масштабов измерения длин объектов неограниченно велик и способен обеспечить бесконечное число потребностей. Существование этих объектов бросает нам вызов, склоняя к изучению их форм. Этого избежал Евклид, оставив в стороне вопрос о том, как быть с бесформенным, как исследовать морфологию живого. Математики пренебрегали этим вызовом, более того - хотели убежать от природы, изобретая теории, не связанные ни с чем, что бы мы могли увидеть или почувствовать» [19].

На рисунке 1 представлено фрактальное дерево, созданное с помощью компьютера английским ученым Майклом Бэтти. Каждая веточка дерева разделяется на две, чтобы в итоге создать фрактальный купол. Иллюстрация слева представляет шесть итераций или ветвлений. На тринадцатой итерации (иллюстрация справа) дерево приобретает уже более реалистические черты. Рекурсивное моделирование может генерировать различные разновидности деревьев с помощью изменения фрактального числа. Фрактальные деревья иллюстрируют тот факт, что фрактальная геометрия - мера изменений. Каждое разветвление дерева, каждый изгиб на реке, каждое изменение направления рынка - точка принятия очередного решения [19].

 

1.2 Описание геометрических законов

Вокруг нас с необычным упорством повторяются два вида симметрии. Один - это зеркальная, или билатеральная, симметрия — «симметрия листка» (сам листок, гусеница, бабочка), другой соответствует радиально-лучевой симметрии (ромашка, подсолнечник, грибы, деревья, султан паров, фонтан). Очень важно отметить, что на несорванных цветах и грибах, растущих деревьях, бьющем фонтане или столбе паров плоскости симметрии ориентированы всегда вертикально.

На этом основании можно сформулировать в несколько упрощенном и схематизированном виде общий закон, ярко и повсеместно проявляющийся в природе [33].

Все то, что растет или движется по вертикали, т. е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой («ромашково-грибной») симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии — «симметрии листка» (одна плоскость симметрии).

Этому всеобщему закону послушны не только цветы, животные, легкоподвижные жидкости и газы, но и твердые неподатливые камни. Известный советский кристаллограф Г. Г. Леммлейн (1901—1962) установил, что кристаллы кварца, развивавшиеся в вертикальном направлении на дне хрусталеносной пещеры, имеют внешнюю радиальную симметрию. Вместе с тем внешняя симметрия кристаллов того же кварца, образовавшихся на стенке пещеры и разраставшихся в косом или горизонтальном направлении, нередко отвечает «симметрии листка». В этом отношении кристаллы кварца ведут себя совершенно так же, как цветы. В самом деле, цветочные чашечки, обращенные кверху (ромашка, подсолнечник), имеют, как мы уже знаем, целый веер пересекающихся плоскостей симметрии. В то же время цветы, расположенные на стебле сбоку (душистый горошек, орхидея и др.), обладают, подобно листьям, только одной плоскостью симметрии [33].

Итак, даже каменный материал покоряется нашему всесильному закону. Тем более этот закон должен влиять на податливые и изменчивые формы облаков. И действительно, в безветренный погожий день мы любуемся куполовидными их очертаниями с более или менее ясно выраженной радиально-лучевой симметрией. Но вот подул ветер, т. е. добавилась сила, действующая по горизонтали, и облака вытянулись в одном направлении, образуя фигуры «рыб», «верблюдов», «горных цепей» и других тел, так часто упоминающихся на страницах литературных произведений. Все эти тела обладают одной более или менее ясно выраженной плоскостью симметрии. К сожалению, изменчивость, расплывчатость и текучесть облаков, слишком быстро меняющихся на наших глазах, мешают увидеть это. И все-таки мы ясно улавливаем и для них проявление все того же закона симметрии с билатеральными и радиально-лучевыми формами.

Для того чтобы окончательно утвердить природный закон, надо хорошо понять и объяснить его сущность. Чем вызывается всеобщий закон симметрии, которому так послушно подчиняется природа? Почему с таким упорством повторяются два типа симметрии на всем окружающем нас?

Оказывается, что все это является в основном результатом воздействия силы земного тяготения. Работу этой силы можно сравнить с игрой ребенка, который с помощью игрушечной формочки делает одинаковые песочные пирожки. Наподобие забавы маленького ребенка, но в огромных масштабах и размерах сила земного тяготения налагает свою «длань незримо-роковую» на все находящееся в поле ее действия.

Отметим, что влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти. Все растущее, борясь с придавливающей к земле силой земного тяготения, стремится, как бы обойти ее и набирает рост не прямо вверх по вертикали, а по малозаметным винтовым линиям и спиралям. В природе тяга к спиральному росту особенно четко видна на растениях.

Учет закона симметрии помогает человеку возводить прочные постройки, конструировать подвижные машины. Невыполнение требований, вытекающих из этого закона, приводило (да и сейчас приводит) к тому, что крупные, но неправильно запроектированные сооружения бывают неустойчивыми. Обратим внимание на то, что большинство предметов в комнате имеет «симметрию листка» (стул, кресло, диван) или же радиально-лучевую симметрию (круглый стол, табурет, настольная и висячая лампы). Следовательно, все эти предметы хорошо согласуются с симметрией поля земного тяготения и вполне устойчивы.

Циклоида – простейшая кривая, которую описывает точка окружности, катящейся по неподвижной прямой. Эта кривая имеет бесконечно много точек возврата, описываемых точкой, когда катящаяся кривая опускает ее на прямую, а затем вновь поднимает с прямой (рис.2)


Подпись: Рисунок 2. Циклоида

Циклоида обладает многими замечательными свойствами и привлекла внимание не одного выдающегося математика XVII века. Циклоиду также можно получить, как огибающую (семейства прямых, семейства прямых, с которыми совпадает какой-нибудь выделенный диаметр окружности, катящейся по прямой).

Перевернем дугу циклоиды, изображенной на рисунке, выпуклостью вниз и представим себе, что это гладкая кривая на вертикальной плоскости. Тогда, в какую бы точку этой кривой мы не помещали тяжелую частицу (материальное точку), она скатиться на «дно» - достигнет наинизшей точки кривой – за одно и тоже время. Это свойство циклоиды навело величайшего голландского физика и математика Христиана Гюйгенса (1629-1695) на мысль использовать циклоиду, на которую при качании наматывалась бы нить маятника, в надежде что это позволит добиться изохронности колебаний. Если нить натянуть вдоль циклоиды, а затем отпустить, то любая точка нити опишет циклоиду. Гюйгенс считал, что если грузик маятника будет вынужден двигаться по дуге циклоиды, то продолжительность колебаний маятника станет одинаковой. Построенные Гюйгенсом часы (первые маятниковые часы) шли не очень точно, и от них вскоре отказались, но сама идея была необычайно остроумной.

Спирали приводили древних математиков в восторг. Мы рассмотрим спираль Архимеда и равноугольную, или логарифмическую спираль.

Под спиралью мы понимаем плоскую кривую, которую опишет точка, совершая круги и одновременно удаляясь от некоторой неподвижной точки, называемой полюсом. Спираль Архимеда, названная так потому, что Архимед описал ее в своей работе о спиралях, имеет очень простое уравнение в полярных координатах: r = aΰ.

Предположим, что муха ползет с постоянной скоростью вдоль прямой ОР, равномерно вращающейся вокруг полюса О. Тогда путь мухи на плоскости будет иметь вид спирали Архимеда. Такую спираль проще всего вычерчивать на специальной бумаге с нанесенной сеткой полярных координат (рис. 3).

Подпись: Рисунок 3. Спираль Архимеда.

Спираль Архимеда состоит из бесконечно многих витков. Она начинается в центре циферблата и все более и более удаляется от него по мере того, как растет число оборотов. На рис.4 изображены первый виток и часть второго [20].

Подпись: Рисунок 4. Первый виток спирали Архимеда.

Вы, наверное, слышали, что с помощью циркуля и линейки невозможно разделить на три равные части наудачу взятый угол (в частных случаях, когда угол содержит, например, 180°, 135° или 90°, эта задача легко решается). А вот если пользоваться аккуратно начерченной архимедовой спиралью, то любой угол можно разделить на какое угодно число равных частей.

Подпись: Рисунок 5. Деление угла на три равные части.


Разделим, например, угол АОВ на три равные части (рис. 5). Если считать, что стрелка повернулась как раз на этот угол, то жучок будет находиться ,в точке N на стороне угла. Но когда угол поворота был втрое меньше, то и муха был втрое ближе к центру О. Чтобы найти это его положение, разделим сначала отрезок ОN на три равные части. Это можно сделать с помощью циркуля и линейки. Получим отрезок ОN1, длина которого втрое меньше, чем ОN. Чтобы вернуть жучка на спираль, нужно сделать засечку этой кривой радиусом ОN1 (снова циркуль!). Получим точку М. Угол AOМ и будет втрое меньше угла АОN.

Самого Архимеда занимали, однако, другие, более трудные задачи, которые он сам поставил и решил: 1) найти площадь фигуры, ограниченной первым витком спирали (на рис. 4 она заштрихована); 2) получить способ построения касательной к спирали в какой-либо ее точке N.

Замечательно, что обе задачи представляют собой самые ранние примеры задач, относящихся к математическому анализу. Начиная с XVII в., площади фигур вычисляются математиками с помощью интеграла, а касательные проводятся с помощью производных. Поэтому Архимеда можно назвать предшественником математического анализа.

Подпись: Рисунок 6. Построение касательной.


Для первой из названных задач мы просто укажем результат, полученный Архимедом: площадь фигуры составляет точно 1/3 площади круга радиуса ОА. Для второй задачи можно показать ход ее решения, несколько упростив при этом рассуждения самого Архимеда. Все дело в том, что скорость, с которой жучок описывает спираль, в каждой точке N направлена по касательной к спирали в этой точке. Если будем знать, как направлена эта скорость, то и касательную построим.

Но движение мухи в точке N складывается из двух различных движений (рис. 6); одно—по направлению стрелки со скоростью υ (см/с), а другое—вращательное по окружности с центром в О и радиусом ОN. Чтобы представить последнее, допустим, что муха замерла на мгновенье в точке N. Тогда он будет уноситься вместе со стрелкой по окружности радиуса ON. Скорость последнего вращательного движения направлена по касательной к окружности. А какова ее величина? Если бы муха могла описать полную окружность радиуса ОN, то за 60 секунд он проделал бы путь, равный 2π ОN. Так как скорость при этом оставалась бы постоянной по величине, то для ее отыскания нужно разделить путь на время. Получим 2πОN/60 = πON/30, т. е. немногим более, чем 0,1 ON (π/30=3,14/30=0,105).

Теперь, когда мы знаем обе составляющие скорости в точке N: одну по направлению ОN, равную υ (см/с), и другую, к ней перпендикулярную, равную πON/30 (см/с), остается сложить их по правилу параллелограмма. Диагональ представит скорость составного движения и вместе с тем определит направление касательной NТ к спирали в данной точке [20].

Наша следующая кривая — равноугольная, или логарифмическая, спираль — устроена хитроумнее, чем спираль Архимеда. Изучать ее первым начал Декарт (1638 г.), независимо от него с ней работал Торричелли, а в конце XVII века многие замечательные свойства логарифмической кривой, о которых сейчас пойдет речь, установил Якоб Бернулли. Эти почти мистические свойства произвели на ученого столь сильное впечатление, что он завещал высечь на своем надгробии слова: «Еаdem mutate resurgo» (измененная, я воскресаю той же).

Подпись: Рисунок 7. Равноугольная спираль.

Равноугольную спираль (рис.7) можно, определить как геометрическое место точек Р, движущихся и плоскости так, что касательная в точке Р образует постоянный угол а с радиус-вектором ОР, проведенным в точку Р из неподвижного полюса О. Дифференциальное исчисление позволяет легко и просто вывести уравнение логарифмической спирали. Наиболее естественно записывать его в полярных координатах (r, θ), в которых оно принимает изящный вид:

г = аеθ ctg a,

где е—фундаментальная постоянная, используемая как основание натуральных логарифмов, а а—значение г при θ == 0.

Одно из основных свойств равноугольной спирали мы получим, если обратимся к наиболее характерному свойству показательной функции eх — соотношению ep+q == ереq.

Предположим, что точки Р, Q, R ... размещены на спирали через равные угловые промежутки (все углы QОР, RОQ, ... равны одной и той же величине β). Тогда OQ/ ОР == еβ ctg a == OR/OQ = ..., поэтому в треугольниках ОРQ, OQR, ... углы при вершине О равны и отношение сходственных сторон остается неизменно. По теореме из «Начал» Евклида все эти треугольники подобны. Следовательно, углы ОQР, ОRQ, ... равны. Пользуясь одним лишь этим свойством, можно доказать, что касательная в любой точке Р логарифмической спирали образует постоянный угол с радиус-вектором ОР.

Пусть Р и Q — любые две точки логарифмической спирали, причем ОР> OQ. Предположим, что в полюс О мы воткнули булавку и всю спираль можно поворачивать вокруг точки О. Если повернуть спираль так, чтобы прямая OQ совпала с прямой ОР, то растяжение спирали (полюс О остается неподвижным), переводящее точку Q в точку Р, отобразит каждую точку повернутой спирали на соответствующую точку исходной спирали.

А теперь перечислим некоторые свойства равноугольной спирали, столь глубоко поразивших Якоба Бернулли.

Если луч света, испущенный источником в точке О, отражается от равноугольной спирали в точке Р, то огибающей отраженных лучей, когда точка Р опишет всю кривую, будет спираль, в точности повторяющая исходную. Это означает, что каустикой равноугольной спирали служит такая же равноугольная спираль. В каждой точке равноугольной спирали существует перпендикуляр к касательной, называемый, как и в случае других кривых, нормалью. Огибающей нормалей также служит равноугольная спираль, совпадающая по форме с исходной спиралью. Подера равноугольной спирали относительно полюса 0 (то есть геометрическое место оснований перпендикуляров, опущенных из точки О на касательные к кривой) имеет форму исходной равноугольной спирали [20].

Существует вполне простой способ построения эволюты любой заданной кривой: нужно лишь туго навить на кривую нить, к концу которой прикреплен карандаш и, разматывая эту нить, следить за тем, чтобы она оставалась натянутой. Конец карандаша опишет эволюту. Эта кривая замечательна тем, что огибающая ее нормалей совпадает с исходной кривой!

Многие из описанных нами огибающих сравнительно недавно привлекли внимание художников. Произведения с их изображениями часто продают по весьма высоким ценам. Работа, выполненная цветными нитками на куске тонкого картона, позволяет зрителю погрузиться в глубины трансцендентных размышлений. Математическое вышивание было введено в женских школах примерно сто лет назад, и ныне его все шире ставят на коммерческую основу. Недавно появившийся прибор для вычерчивания эпициклов пользовался огромным успехом. Можно не сомневаться в том, что кривые навсегда останутся одним из наиболее интересных творений математики.

Итак, знание геометрических законов природы имеет огромное практическое значение. Мы должны не только научиться понимать эти законы, но и заставлять служить их нам на пользу.

 

1.3 Сущность геометрических построений

Развитие статических и динамических представлений детей относятся к числу важнейших задач обучения в школе. Сознавая это, учитель старается использовать богатые возможности курса черчения для постановки и решения различных пространственных задач в процессе графической подготовки учащихся. Немаловажную роль в расширении и продуктивном развитии пространственных представлений играют геометрические построения [8;12].

Деление окружности на равные части, достаточно распространенное геометрическое построение, основывается на законах симметрии, а именно является примером поворотной симметрии [1;7].

Деление окружности на восемь равных частей.

Деление окружности на восемь равных частей производится в следующей последовательности (рис.8):

Проводят две перпендикулярные оси, которые пересекая окружность в точках 1, 2, 3, 4 делят ее на четыре равные части;

Подпись: Рисунок 8. Деление окружности на восемь равных частей.

Применяя известный прием деления прямого угла на две равные части при помощи циркуля или угольника строят биссектрисы прямых углов, которые, пересекаясь с окружностью в точках 5, 6, 7, и 8 делят каждую четвертую часть окружности пополам.


Деление окружности на три, шесть и двенадцать равных частей.

Деление окружности на три, шесть и двенадцать равных частей выполняется в следующей последовательности (рис.9):

Выбираем в качестве точки 1, точку пересечения осевой линии с окружностью.

Подпись: Рисунок 9. Деление окружности на равные части, число которых кратно трем.

Из точки 4 пересечения осевой линии с окружностью проводим дугу радиусом равным радиусу окружности R до пересечения с окружностью в точках 2 и 3; Точки 1, 2 и 3 делят окружность на три равные части;

Из точки 1 пересечения осевой линии с окружностью проводим дугу радиусом равным радиусу окружности R до пересечения с окружностью в точках 5 и 6;

Точки 1 - 6 делят окружность на шесть равных частей;

Дуги радиусом R, проведенные из точек 7 и 8 пересекут окружность в точках 9, 10, 11 и 12;

Точки 1 - 12 делят окружность на двенадцать равных частей.

Деление окружности на пять равных частей.

Деление окружности на пять равных частей выполняется в следующей последовательности (рис.10):

Из точки А радиусом, равным радиусу окружности R, проводим дугу, которая пересечет окружность в точке В; Из точки В опускают перпендикуляр на горизонтальную осевую линию;

Подпись: Рисунок 10. Деление окружности на пять равных частей.

Из основания перпендикуляра - точки С, радиусом равным С1, проводят дугу окружности, которая пересечет горизонтальную осевую линию в точке D;

Из точки 1 радиусом равным D1, проводят дугу до пересечения с окружностью в точке 2, дуга 12 равна 1/5 длины окружности;

Точки 3, 4 и 5 находят откладывая циркулем по данной окружности хорды, равные D1.


Деление окружности на семь равных частей.

Деление окружности на семь равных частей выполняется в следующей последовательности (рис.11):

Из точки А радиусом, равным радиусу окружности R, проводим дугу, которая пересечет окружность в точке В; Из точки В опускают перпендикуляр на горизонтальную осевую линию;

Длину перпендикуляра ВС откладывают от точки 1 по окружности семь раз и получают искомые точки 1 - 7.

Подпись: Рисунок 11. Деление окружности на семь равных частей.

 

Деление окружности на любое количество равных частей [23]

Для деления окружности на любое количество равных частей можно воспользоваться коэффициентами (см. таблицу 1.). Зная, на какое число n следует разделить окружность, находят коэффициент k. При умножении коэффициента k на диаметр D этой окружности, получают длину хорды, которую циркулем откладывают на заданной окружности n раз.


Таблица 1.

Похожие работы:

  1. • Вивчення елементів стереометрії у курсі геометрії 9 ...
  2. • Использование компьютера в учебно-воспитательном процессе
  3. • Создание программного обеспечения электронного ...
  4. • Методика изучения объемов многогранников в курсе ...
  5. • Історія математики Греції
  6. • Методика изучения многогранников в школьном курсе ...
  7. • Гармония живой природы и проблема происхождения мира
  8. • Математики эпохи Возрождения
  9. • Представители греческой философской мысли
  10. • Математика 16 века: люди и открытия
  11. • Новые возможности Solid Works
  12. • О чем молчат красоты мира
  13. • Формирование логико-информационных и речевых коммуникативных ...
  14. • Основы биогеохимии
  15. • Культура Древней Греции: архитектура
  16. • Человек и человечество в учении В С Соловьева
  17. • Материализм философов-просветителей Д. Дидро и П. Гольбаха
  18. • Жизнь души или размышления о философии В.С.Соловьева
  19. • Храм Сурьи в Конараке